ﻻ يوجد ملخص باللغة العربية
Recent observations and simulations have challenged the long-held paradigm that mergers are the dominant mechanism driving the growth of both galaxies and supermassive black holes (SMBH), in favour of non-merger (secular) processes. In this pilot study of merger-free SMBH and galaxy growth, we use Keck Cosmic Web Imager spectral observations to examine four low-redshift ($0.043 < z < 0.073$) disk-dominated `bulgeless galaxies hosting luminous AGN, assumed to be merger-free. We detect blueshifted broadened [OIII] emission from outflows in all four sources, which the oiii/hbeta~ratios reveal are ionised by the AGN. We calculate outflow rates in the range $0.12-0.7~rm{M}_{odot}~rm{yr}^{-1}$, with velocities of $675-1710~rm{km}~rm{s}^{-1}$, large radial extents of $0.6-2.4~rm{kpc}$, and SMBH accretion rates of $0.02-0.07~rm{M}_{odot}~rm{yr}^{-1}$. We find that the outflow rates, kinematics, and energy injection rates are typical of the wider population of low-redshift AGN, and have velocities exceeding the galaxy escape velocity by a factor of $sim30$, suggesting that these outflows will have a substantial impact through AGN feedback. Therefore, if both merger-driven and non-merger-driven SMBH growth lead to co-evolution, this suggests that co-evolution is regulated by feedback in both scenarios. Simulations find that bars and spiral arms can drive inflows to galactic centres at rates an order of magnitude larger than the combined SMBH accretion and outflow rates of our four targets. This work therefore provides further evidence that non-merger processes are sufficient to fuel SMBH growth and AGN outflows in disk galaxies.
The most accepted scenario for the evolution of massive galaxies across cosmic time predicts a regulation based on the interplay between AGN feedback, which injects large amounts of energy in the host environment, and galaxy mergers, being able to tr
The prevalence and properties of kiloparsec-scale outflows in nearby Type 1 quasars have been the subject of little previous attention. This work presents Gemini integral field spectroscopy of ten Type 1 radio-quiet quasars at $z<0.3$. The excellent
We employ optical spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) combined with X-ray and radio data to study the highly-ionized gas (HIG) phase of the feedback in a sample of five local nearby Active Galactic Nuclei (AGN). Thanks to t
We present a spatially-resolved analysis of ionized and molecular gas in a nearby Seyfert 2 galaxy NGC 5728, using the VLT/MUSE and ALMA data. We find ionized gas outflows out to ~kpc scales, which encounter the star formation ring at 1 kpc radius. T
Seyfert and LINER galaxies are known to exhibit compact radio emission on $sim$ 10 to 100 parsec scales, but larger Kiloparsec-Scale Radio structures (KSRs) often remain undetected in sub-arcsec high resolution observations. We investigate the preval