ﻻ يوجد ملخص باللغة العربية
The discovery of a relationship between supermassive black hole (SMBH) mass and spiral arm pitch angle (P) is evidence that SMBHs are tied to the overall secular evolution of a galaxy. The discovery of SMBHs in late-type galaxies with little or no bulge suggests that an underlying correlation between the dark matter halo concentration and SMBH mass (MBH) exists, rather than between the bulge mass and MBH. In this paper we measure P using a two-dimensional fast fourier transform and estimate the bar pattern speeds of 40 barred spiral galaxies from the Carnegie-Irvine Galaxy Survey. The pattern speeds were derived by estimating the gravitational potentials of our galaxies from Ks-band images and using them to produce dynamical simulation models. The pattern speeds allow us to identify those galaxies with low central dark halo densities, or fast rotating bars, while P provides an estimate of MBH. We find that a wide range of MBH exists in galaxies with low central dark matter halo densities, which appears to support other theoretical results. We also find that galaxies with low central dark halo densities appear to follow more predictable trends in P versus de Vaucouleurs morphological type (T) and bar strength versus T than barred galaxies in general. The empirical relationship between MBH and total gravitational mass of a galaxy (Mtot) allows us to predict the minimum Mtot that will be observationally measured of our fast bar galaxies. These predictions will be investigated in a subsequent paper.
We study the relations between the mass of the central black hole (BH) $M_{rm BH}$, the dark matter halo mass $M_{rm h}$, and the stellar-to-halo mass fraction $f_starpropto M_star/M_{rm h}$ in a sample of $55$ nearby galaxies with dynamically measur
We generalize the Thomas-Fermi approach to galaxy structure to include self-consistently and non-linearly central supermassive black holes. This approach naturally incorporates the quantum pressure of the warm dark matter (WDM) particles and shows it
Satellite galaxies in rich clusters are subject to numerous physical processes that can significantly influence their evolution. However, the typical L* satellite galaxy resides in much lower mass galaxy groups, where the processes capable of alterin
We summarize the results from numerical simulations of mass outflows from AGN. We focus on simulations of outflows driven by radiation from large-scale inflows. We discuss the properties of these outflows in the context of the so-called AGN feedback
Using the self-consistent modeling of the conditional stellar mass functions across cosmic time by Yang et al. (2012), we make model predictions for the star formation histories (SFHs) of {it central} galaxies in halos of different masses. The model