ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Link Between Central Black Holes, Bar Dynamics, and Dark Matter Halos in Spiral Galaxies

132   0   0.0 ( 0 )
 نشر من قبل Patrick Treuthardt
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of a relationship between supermassive black hole (SMBH) mass and spiral arm pitch angle (P) is evidence that SMBHs are tied to the overall secular evolution of a galaxy. The discovery of SMBHs in late-type galaxies with little or no bulge suggests that an underlying correlation between the dark matter halo concentration and SMBH mass (MBH) exists, rather than between the bulge mass and MBH. In this paper we measure P using a two-dimensional fast fourier transform and estimate the bar pattern speeds of 40 barred spiral galaxies from the Carnegie-Irvine Galaxy Survey. The pattern speeds were derived by estimating the gravitational potentials of our galaxies from Ks-band images and using them to produce dynamical simulation models. The pattern speeds allow us to identify those galaxies with low central dark halo densities, or fast rotating bars, while P provides an estimate of MBH. We find that a wide range of MBH exists in galaxies with low central dark matter halo densities, which appears to support other theoretical results. We also find that galaxies with low central dark halo densities appear to follow more predictable trends in P versus de Vaucouleurs morphological type (T) and bar strength versus T than barred galaxies in general. The empirical relationship between MBH and total gravitational mass of a galaxy (Mtot) allows us to predict the minimum Mtot that will be observationally measured of our fast bar galaxies. These predictions will be investigated in a subsequent paper.

قيم البحث

اقرأ أيضاً

104 - A. Marasco , G. Cresci , L. Posti 2021
We study the relations between the mass of the central black hole (BH) $M_{rm BH}$, the dark matter halo mass $M_{rm h}$, and the stellar-to-halo mass fraction $f_starpropto M_star/M_{rm h}$ in a sample of $55$ nearby galaxies with dynamically measur ed $M_{rm BH}>10^6,{rm M}_odot$ and $M_{rm h}>5times10^{11},{rm M}_odot$. The main improvement with respect to previous studies is that we consider both early- and late-type systems for which $M_{rm h}$ is determined either from globular cluster dynamics or from spatially resolved rotation curves. Independently of their structural properties, galaxies in our sample build a well defined sequence in the $M_{rm BH}$-$M_{rm h}$-$f_star$ space. We find that: (i) $M_{rm h}$ and $M_{rm BH}$ strongly correlate with each other and anti-correlate with $f_star$; (ii) there is a break in the slope of the $M_{rm BH}$-$M_{rm h}$ relation at $M_{rm h}$ of $10^{12},{rm M}_odot$, and in the $f_star$-$M_{rm BH}$ relation at $M_{rm BH}$ of $sim10^7!-!10^8,{rm M}_odot$; (iii) at a fixed $M_{rm BH}$, galaxies with a larger $f_star$ tend to occupy lighter halos and to have later morphological types. We show that the observed trends can be reproduced by a simple equilibrium model in the $Lambda$CDM framework where galaxies smoothly accrete dark and baryonic matter at a cosmological rate, having their stellar and black hole build-up regulated both by the cooling of the available gas reservoir and by the negative feedback from star formation and active galactic nuclei (AGN). Feature (ii) arises as the BH population transits from a rapidly accreting phase to a more gentle and self-regulated growth, while scatter in the AGN feedback efficiency can account for feature (iii).
We generalize the Thomas-Fermi approach to galaxy structure to include self-consistently and non-linearly central supermassive black holes. This approach naturally incorporates the quantum pressure of the warm dark matter (WDM) particles and shows it s full powerful and clearness in the presence of supermassive black holes (SPMHs). We find the main galaxy and central black hole magnitudes: halo radius r_h , halo mass M_h, black hole mass M_BH, velocity dispersion, phase space density, with their realistic astrophysical values, masses and sizes over a wide galaxy range. The SMBH masses arise naturally in this framework. Our extensive numerical calculations and detailed analytic resolution show that with SMBHs, both WDM regimes: classical (Boltzmann dilute) and quantum (compact) do necessarily co-exist in any galaxy: from the smaller and compact galaxies to the largest ones. The transition from the quantum to the classical region occurs precisely at the same point r_A where the chemical potential vanishes. A novel halo structure with three regions shows up: A small quantum compact core of radius r_A around the SMBH, followed by a less compact region till the BH influence radius r_i, and then for r> r_i the known halo galaxy shows up with its astrophysical size. Three representative families of galaxy plus central SMBH solutions are found and analyzed:small, medium and large galaxies having SMBH masses of 10^5, 10^7 and 10^9 M_sun respectively. A minimum galaxy size and mass ~ 10^7 M_sun larger than the one without SMBH is found. Small galaxies in the range 10^4 M_sun < M_h < 10^7 M_sun cannot harbor central SMBHs. We find novel scaling M_BH - r_h - M_h relations. The galaxy equation of state is derived: The pressure P(r) takes huge values in the SMBH vecinity and then sharply decreases entering the classical region following a local perfect gas behaviour.(Abridged)
Satellite galaxies in rich clusters are subject to numerous physical processes that can significantly influence their evolution. However, the typical L* satellite galaxy resides in much lower mass galaxy groups, where the processes capable of alterin g their evolution are generally weaker and have had less time to operate. To investigate the extent to which satellite and central galaxy evolution differs, we separately model the stellar mass - halo mass (M* -Mh) relation for these two populations over the redshift interval 0 < z < 1. This relation for central galaxies is constrained by the galaxy stellar mass function while the relation for satellite galaxies is constrained against recent measurements of the galaxy two-point correlation function (2PCF). At z ~ 0 the satellites, on average, have ~10% larger stellar masses at fixed peak subhalo mass compared to central galaxies of the same halo mass. This is required in order to reproduce the observed stellar mass-dependent 2PCF and satellite fractions. At low masses our model slightly under-predicts the correlation function at ~1 Mpc scales. At z ~ 1 the satellite and central galaxy M*-Mh relations are consistent within the errors, and the model provides an excellent fit to the clustering data. At present, the errors on the clustering data at z ~ 2 are too large to constrain the satellite model. A simple model in which satellite and central galaxies share the same M*-Mh relation is able to reproduce the extant z ~ 2 clustering data. We speculate that the striking similarity between the satellite and central galaxy M*-Mh relations since z ~ 2 arises because the central galaxy relation evolves very weakly with time and because the stellar mass of the typical satellite galaxy has not changed significantly since it was accreted. [Abridged]
241 - Daniel Proga 2010
We summarize the results from numerical simulations of mass outflows from AGN. We focus on simulations of outflows driven by radiation from large-scale inflows. We discuss the properties of these outflows in the context of the so-called AGN feedback problem. Our main conclusion is that this type of outflows are efficient in removing matter but inefficient in removing energy.
Using the self-consistent modeling of the conditional stellar mass functions across cosmic time by Yang et al. (2012), we make model predictions for the star formation histories (SFHs) of {it central} galaxies in halos of different masses. The model requires the following two key ingredients: (i) mass assembly histories of central and satellite galaxies, and (ii) local observational constraints of the star formation rates of central galaxies as function of halo mass. We obtain a universal fitting formula that describes the (median) SFH of central galaxies as function of halo mass, galaxy stellar mass and redshift. We use this model to make predictions for various aspects of the star formation rates of central galaxies across cosmic time. Our main findings are the following. (1) The specific star formation rate (SSFR) at high $z$ increases rapidly with increasing redshift [$propto (1+z)^{2.5}$] for halos of a given mass and only slowly with halo mass ($propto M_h^{0.12}$) at a given $z$, in almost perfect agreement with the specific mass accretion rate of dark matter halos. (2) The ratio between the star formation rate (SFR) in the main-branch progenitor and the final stellar mass of a galaxy peaks roughly at a constant value, $sim 10^{-9.3} h^2 {rm yr}^{-1}$, independent of halo mass or the final stellar mass of the galaxy. However, the redshift at which the SFR peaks increases rapidly with halo mass. (3) More than half of the stars in the present-day Universe were formed in halos with $10^{11.1}msunh < M_h < 10^{12.3}msunh$ in the redshift range $0.4 < z < 1.9$. (4) ... [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا