ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum to classical transition via fuzzy measurements on high gain spontaneous parametric down-conversion

107   0   0.0 ( 0 )
 نشر من قبل Francesco de Martini
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the high gain spontaneous parametric down-conversion in a non collinear geometry as a paradigmatic scenario to investigate the quantum-to-classical transition by increasing the pump power, that is, the average number of generated photons. The possibility of observing quantum correlations in such macroscopic quantum system through dichotomic measurement will be analyzed by addressing two different measurement schemes, based on different dichotomization processes. More specifically, we will investigate the persistence of non-locality in an increasing size n/2-spin singlet state by studying the change in the correlations form as $n$ increases, both in the ideal case and in presence of losses. We observe a fast decrease in the amount of Bells inequality violation for increasing system size. This theoretical analysis is supported by the experimental observation of macro-macro correlations with an average number of photons of about 10^3. Our results enlighten the practical extreme difficulty of observing non-locality by performing such a dichotomic fuzzy measurement.



قيم البحث

اقرأ أيضاً

Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits i nto two other photons of lower energies. One would think that this article is about particle physics and yet it is not, as this process can occur fairly easily on a day to day basis in an optics laboratory. Nowadays, SPDC is at the heart of many quantum optics experiments for applications in quantum cryptography, quantum simulation, quantum metrology but also for testing fundamentals laws of physics in quantum mechanics. In this article, we will focus on the physics of this process and highlight few important properties of SPDC. There will be two parts: a first theoretical one showing the particular quantum nature of SPDC and the second part, more experimental and in particular focusing on applications of parametric down-conversion. This is clearly a non-exhaustive article about parametric down-conversion as there is a tremendous literature on the subject, but it gives the necessary first elements needed for a novice student or researcher to work on SPDC sources of light.
Light beams with orbital angular momentum (OAM) are convenient carriers of quantum information. They can be also used for imparting rotational motion to particles and provide high resolution in imaging. Due to the conservation of OAM in parametric do wn-conversion (PDC), signal and idler photons generated at low gain have perfectly anti-correlated OAM values. It is interesting to study the OAM properties of high-gain PDC, where the same OAM modes can be populated with large, but correlated, numbers of photons. Here we investigate the OAM spectrum of high-gain PDC and show that the OAM mode content can be controlled by varying the pump power and the configuration of the source. In our experiment, we use a source consisting of two nonlinear crystals separated by an air gap. We discuss the OAM properties of PDC radiation emitted by this source and suggest possible modifications.
Miniaturised entangled photon sources are highly demanded for the development of integrated quantum photonics. Since the invention of subwavelength optical metasurfaces and their successes at replacing bulky optical components, the possibility of imp lementing entangled photon sources on such devices is actively investigated. Here, as a first step towards the development of quantum optical metasurfaces (QOM), we demonstrate photon pair generation via spontaneous parametric down-conversion (SPDC) from subwavelength films. We achieved photon pair generation with a high coincidence-to-accidental ratio in lithium niobate and gallium phosphide nanofilms. In addition, we have measured the SPDC frequency spectrum via fibre spectroscopy, obtaining photon pairs with a spectral bandwidth of 500;nm, limited only by the overall detection efficiency. Moreover, we have observed the vacuum field enhancement due to a Fabry-Perot resonance inside the nonlinear films. Our experiments lay the groundwork for the future development of flat SPDC sources, including QOM.
The correlation properties of the pump field in spontaneous parametric down-conversion are crucial in determining the degree of entanglement of generated signal and idler photons. We find theoretically that continuous-variable entanglement of the tra nsverse positions and momenta of these photons can be achieved only if the coherence of the pump beam is sufficiently high. The positions of signal and idler photons are found to be correlated, even for an incoherent pump. However, the momenta of the signal and idler photons are not anti-correlated, even though transverse momentum is conserved.
We present an experimental characterization of the statistics of multiple photon pairs produced by spontaneous parametric down-conversion realized in a nonlinear medium pumped by high-energy ultrashort pulses from a regenerative amplifier. The photon number resolved measurement has been implemented with the help of a fiber loop detector. We introduce an effective theoretical description of the observed statistics based on parameters that can be assigned direct physical nterpretation. These parameters, determined for our source from the collected experimental data, characterize the usefulness of down-conversion sources in multiphoton interference schemes that underlie protocols for quantum information processing and communication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا