ﻻ يوجد ملخص باللغة العربية
The correlation properties of the pump field in spontaneous parametric down-conversion are crucial in determining the degree of entanglement of generated signal and idler photons. We find theoretically that continuous-variable entanglement of the transverse positions and momenta of these photons can be achieved only if the coherence of the pump beam is sufficiently high. The positions of signal and idler photons are found to be correlated, even for an incoherent pump. However, the momenta of the signal and idler photons are not anti-correlated, even though transverse momentum is conserved.
Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits i
Strong correlations in two conjugate variables are the signature of quantum entanglement and have played a key role in the development of modern physics. Entangled photons have become a standard tool in quantum information and foundations. An impress
We report the efficient generation of high-gain parametric down-conversion, including pump depletion, with pump powers as low as 100 $mu$W (energies $0.1$~$mu$J/pulse) and conversion efficiencies up to 33%. In our simple configuration, the pump beam
We show that in parametric down-conversion the coherence properties of a temporally partially coherent pump field get entirely transferred to the down-converted entangled two-photon field. Under the assumption that the frequency-bandwidth of the down
We present an experimental characterization of the statistics of multiple photon pairs produced by spontaneous parametric down-conversion realized in a nonlinear medium pumped by high-energy ultrashort pulses from a regenerative amplifier. The photon