ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of pump coherence on the quantum properties of spontaneous parametric down-conversion

108   0   0.0 ( 0 )
 نشر من قبل Enno Giese
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The correlation properties of the pump field in spontaneous parametric down-conversion are crucial in determining the degree of entanglement of generated signal and idler photons. We find theoretically that continuous-variable entanglement of the transverse positions and momenta of these photons can be achieved only if the coherence of the pump beam is sufficiently high. The positions of signal and idler photons are found to be correlated, even for an incoherent pump. However, the momenta of the signal and idler photons are not anti-correlated, even though transverse momentum is conserved.

قيم البحث

اقرأ أيضاً

Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits i nto two other photons of lower energies. One would think that this article is about particle physics and yet it is not, as this process can occur fairly easily on a day to day basis in an optics laboratory. Nowadays, SPDC is at the heart of many quantum optics experiments for applications in quantum cryptography, quantum simulation, quantum metrology but also for testing fundamentals laws of physics in quantum mechanics. In this article, we will focus on the physics of this process and highlight few important properties of SPDC. There will be two parts: a first theoretical one showing the particular quantum nature of SPDC and the second part, more experimental and in particular focusing on applications of parametric down-conversion. This is clearly a non-exhaustive article about parametric down-conversion as there is a tremendous literature on the subject, but it gives the necessary first elements needed for a novice student or researcher to work on SPDC sources of light.
Strong correlations in two conjugate variables are the signature of quantum entanglement and have played a key role in the development of modern physics. Entangled photons have become a standard tool in quantum information and foundations. An impress ive example is position-momentum entanglement of photon pairs, explained heuristically through the correlations implied by a common birth zone and momentum conservation. However, these arguments entirely neglect the importance of the `quantumness, i.e. coherence, of the driving force behind the generation mechanism. We study theoretically and experimentally how the correlations depend on the coherence of the pump of nonlinear down-conversion. In the extreme case - a truly incoherent pump - only position correlations exist. By increasing the pumps coherence, correlations in momenta emerge until their strength is sufficient to produce entanglement. Our results shed light on entanglement generation and can be applied to adjust the entanglement for quantum information applications.
We report the efficient generation of high-gain parametric down-conversion, including pump depletion, with pump powers as low as 100 $mu$W (energies $0.1$~$mu$J/pulse) and conversion efficiencies up to 33%. In our simple configuration, the pump beam is tightly focused into a bulk periodically poled lithium niobate crystal placed in free space. We also observe a change in the photon number statistics for both the pump and down-converted beams as the pump power increases to reach the depleted pump regime. The experimental results are a clear signature of the interplay between the pump and the down-converted beams in highly efficient parametric down-conversion sources.
We show that in parametric down-conversion the coherence properties of a temporally partially coherent pump field get entirely transferred to the down-converted entangled two-photon field. Under the assumption that the frequency-bandwidth of the down -converted signal-idler photons is much larger than that of the pump, we derive the temporal coherence functions for the down-converted field, for both infinitely-fast and time-averaged detection schemes. We show that in each scheme the coherence function factorizes into two separate coherence functions with one of them carrying the entire statistical information of the pump field. In situations in which the pump is a Gaussian Schell-model field, we derive explicit expressions for the coherence functions. Finally, we show that the concurrence of time-energy-entangled two-qubit states is bounded by the degree of temporal coherence of the pump field. This study can have important implications for understanding how correlations of the pump field manifest as two-particle entanglement as well as for harnessing energy-time entanglement for long-distance quantum communication protocols.
We present an experimental characterization of the statistics of multiple photon pairs produced by spontaneous parametric down-conversion realized in a nonlinear medium pumped by high-energy ultrashort pulses from a regenerative amplifier. The photon number resolved measurement has been implemented with the help of a fiber loop detector. We introduce an effective theoretical description of the observed statistics based on parameters that can be assigned direct physical nterpretation. These parameters, determined for our source from the collected experimental data, characterize the usefulness of down-conversion sources in multiphoton interference schemes that underlie protocols for quantum information processing and communication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا