ﻻ يوجد ملخص باللغة العربية
Light beams with orbital angular momentum (OAM) are convenient carriers of quantum information. They can be also used for imparting rotational motion to particles and provide high resolution in imaging. Due to the conservation of OAM in parametric down-conversion (PDC), signal and idler photons generated at low gain have perfectly anti-correlated OAM values. It is interesting to study the OAM properties of high-gain PDC, where the same OAM modes can be populated with large, but correlated, numbers of photons. Here we investigate the OAM spectrum of high-gain PDC and show that the OAM mode content can be controlled by varying the pump power and the configuration of the source. In our experiment, we use a source consisting of two nonlinear crystals separated by an air gap. We discuss the OAM properties of PDC radiation emitted by this source and suggest possible modifications.
We consider the high gain spontaneous parametric down-conversion in a non collinear geometry as a paradigmatic scenario to investigate the quantum-to-classical transition by increasing the pump power, that is, the average number of generated photons.
Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits i
Spontaneous parametric down conversion (SPDC) has been one of the foremost tools in quantum optics for over five decades. Over that time it has been used to demonstrate some of the curious features that arise from quantum mechanics. Despite the succe
We provide an estimate on the absolute values of the emission rate of photon pairs produced by spontaneous parametric down conversion in a bulk crystal when all interacting fields are in single transverse Gaussian modes. Both collinear and non-collin
We show that in parametric down-conversion the coherence properties of a temporally partially coherent pump field get entirely transferred to the down-converted entangled two-photon field. Under the assumption that the frequency-bandwidth of the down