ﻻ يوجد ملخص باللغة العربية
A local algorithm is a distributed algorithm that completes after a constant number of synchronous communication rounds. We present local approximation algorithms for the minimum dominating set problem and the maximum matching problem in 2-coloured and weakly 2-coloured graphs. In a weakly 2-coloured graph, both problems admit a local algorithm with the approximation factor $(Delta+1)/2$, where $Delta$ is the maximum degree of the graph. We also give a matching lower bound proving that there is no local algorithm with a better approximation factor for either of these problems. Furthermore, we show that the stronger assumption of a 2-colouring does not help in the case of the dominating set problem, but there is a local approximation scheme for the maximum matching problem in 2-coloured graphs.
We study the problem of finding large cuts in $d$-regular triangle-free graphs. In prior work, Shearer (1992) gives a randomised algorithm that finds a cut of expected size $(1/2 + 0.177/sqrt{d})m$, where $m$ is the number of edges. We give a simpler
In computer networks, participants may cooperate in processing tasks, so that loads are balanced among them. We present local distributed algorithms that (repeatedly) use local imbalance criteria to transfer loads concurrently across the participants
Let $G$ be an edge-coloured graph. The minimum colour degree $delta^c(G)$ of $G$ is the largest integer $k$ such that, for every vertex $v$, there are at least $k$ distinct colours on edges incident to $v$. We say that $G$ is properly coloured if no
We obtain sufficient conditions for the emergence of spanning and almost-spanning bounded-degree {sl rainbow} trees in various host graphs, having their edges coloured independently and uniformly at random, using a predetermined palette. Our first re
Naor, Parter, and Yogev [SODA 2020] recently designed a compiler for automatically translating standard centralized interactive protocols to distributed interactive protocols, as introduced by Kol, Oshman, and Saxena [PODC 2018]. In particular, by us