ترغب بنشر مسار تعليمي؟ اضغط هنا

Long properly coloured cycles in edge-coloured graphs

121   0   0.0 ( 0 )
 نشر من قبل Allan Lo
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Allan Lo




اسأل ChatGPT حول البحث

Let $G$ be an edge-coloured graph. The minimum colour degree $delta^c(G)$ of $G$ is the largest integer $k$ such that, for every vertex $v$, there are at least $k$ distinct colours on edges incident to $v$. We say that $G$ is properly coloured if no two adjacent edges have the same colour. In this paper, we show that, for any $varepsilon >0$ and $n$ large, every edge-coloured graph $G$ with $delta^c(G) ge (1/2+varepsilon)n$ contains a properly coloured cycle of length at least $min{ n , lfloor 2 delta^c(G)/3 rfloor}$.



قيم البحث

اقرأ أيضاً

We obtain sufficient conditions for the emergence of spanning and almost-spanning bounded-degree {sl rainbow} trees in various host graphs, having their edges coloured independently and uniformly at random, using a predetermined palette. Our first re sult asserts that a uniform colouring of $mathbb{G}(n,omega(1)/n)$, using a palette of size $n$, a.a.s. admits a rainbow copy of any given bounded-degree tree on at most $(1-varepsilon)n$ vertices, where $varepsilon > 0$ is arbitrarily small yet fixed. This serves as a rainbow variant of a classical result by Alon, Krivelevich, and Sudakov pertaining to the embedding of bounded-degree almost-spanning prescribed trees in $mathbb{G}(n,C/n)$, where $C > 0$ is independent of $n$. Given an $n$-vertex graph $G$ with minimum degree at least $delta n$, where $delta > 0$ is fixed, we use our aforementioned result in order to prove that a uniform colouring of the randomly perturbed graph $G cup mathbb{G}(n,omega(1)/n)$, using $(1+alpha)n$ colours, where $alpha > 0$ is arbitrarily small yet fixed, a.a.s. admits a rainbow copy of any given bounded-degree {sl spanning} tree. This can be viewed as a rainbow variant of a result by Krivelevich, Kwan, and Sudakov who proved that $G cup mathbb{G}(n,C/n)$, where $C > 0$ is independent of $n$, a.a.s. admits a copy of any given bounded-degree spanning tree. Finally, and with $G$ as above, we prove that a uniform colouring of $G cup mathbb{G}(n,omega(n^{-2}))$ using $n-1$ colours a.a.s. admits a rainbow spanning tree. Put another way, the trivial lower bound on the size of the palette required for supporting a rainbow spanning tree is also sufficient, essentially as soon as the random perturbation a.a.s. has edges.
Given an $n$-vertex graph $G$ with minimum degree at least $d n$ for some fixed $d > 0$, the distribution $G cup mathbb{G}(n,p)$ over the supergraphs of $G$ is referred to as a (random) {sl perturbation} of $G$. We consider the distribution of edge-c oloured graphs arising from assigning each edge of the random perturbation $G cup mathbb{G}(n,p)$ a colour, chosen independently and uniformly at random from a set of colours of size $r := r(n)$. We prove that such edge-coloured graph distributions a.a.s. admit rainbow Hamilton cycles whenever the edge-density of the random perturbation satisfies $p := p(n) geq C/n$, for some fixed $C > 0$, and $r = (1 + o(1))n$. The number of colours used is clearly asymptotically best possible. In particular, this improves upon a recent result of Anastos and Frieze (2019) in this regard. As an intermediate result, which may be of independent interest, we prove that randomly edge-coloured sparse pseudo-random graphs a.a.s. admit an almost spanning rainbow path.
Properly colored cycles in edge-colored graphs are closely related to directed cycles in oriented graphs. As an analogy of the well-known Caccetta-H{a}ggkvist Conjecture, we study the existence of properly colored cycles of bounded length in an edge- colored graph. We first prove that for all integers $s$ and $t$ with $tgeq sgeq2$, every edge-colored graph $G$ with no properly colored $K_{s,t}$ contains a spanning subgraph $H$ which admits an orientation $D$ such that every directed cycle in $D$ is a properly colored cycle in $G$. Using this result, we show that for $rgeq4$, if the Caccetta-H{a}ggkvist Conjecture holds , then every edge-colored graph of order $n$ with minimum color degree at least $n/r+2sqrt{n}+1$ contains a properly colored cycle of length at most $r$. In addition, we also obtain an asymptotically tight total color degree condition which ensures a properly colored (or rainbow) $K_{s,t}$.
We investigate the problem of determining how many monochromatic trees are necessary to cover the vertices of an edge-coloured random graph. More precisely, we show that for $pgg n^{-1/6}{(ln n)}^{1/6}$, in any $3$-edge-colouring of the random graph $G(n,p)$ we can find three monochromatic trees such that their union covers all vertices. This improves, for three colours, a result of Bucic, Korandi and Sudakov.
It is conjectured that every edge-colored complete graph $G$ on $n$ vertices satisfying $Delta^{mon}(G)leq n-3k+1$ contains $k$ vertex-disjoint properly edge-colored cycles. We confirm this conjecture for $k=2$, prove several additional weaker result s for general $k$, and we establish structural properties of possible minimum counterexamples to the conjecture. We also reveal a close relationship between properly edge-colored cycles in edge-colored complete graphs and directed cycles in multi-partite tournaments. Using this relationship and our results on edge-colored complete graphs, we obtain several partial solutions to a conjecture on disjoint cycles in directed graphs due to Bermond and Thomassen.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا