ترغب بنشر مسار تعليمي؟ اضغط هنا

Cryogenic characterization of the Planck sorption cooler system flight model

96   0   0.0 ( 0 )
 نشر من قبل Gianluca Morgante
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-0221 Two continuous closed-cycle hydrogen Joule-Thomson (J-T) sorption coolers have been fabricated and assembled by the Jet Propulsion Laboratory (JPL) for the European Space Agency (ESA) Planck mission. Each refrigerator has been designed to provide a total of ~ 1W of cooling power at two instrument interfaces: they directly cool the Planck Low Frequency Instrument (LFI) around 20K while providing a pre-cooling stage for a 4 K J-T mechanical refrigerator for the High Frequency Instrument (HFI). After sub-system level validation at JPL, the cryocoolers have been delivered to ESA in 2005. In this paper we present the results of the cryogenic qualification and test campaigns of the Nominal Unit on the flight model spacecraft performed at the CSL (Centre Spatial de Liege) facilities in 2008. Test results in terms of input power, cooling power, temperature, and temperature fluctuations over the flight allowable ranges for these interfaces are reported and analyzed with respect to mission requirements.



قيم البحث

اقرأ أيضاً

The Low Frequency Instrument on board the PLANCK satellite is designed to give the most accurate map ever of the CMB anisotropy of the whole sky over a broad frequency band spanning 27 to 77 GHz. It is made of an array of 22 pseudo-correlation radiom eters, composed of 11 actively cooled (20 K) Front End Modules (FEMs), and 11 Back End Modules (BEMs) at 300K. The connection between the two parts is made with rectangular Wave Guides. Considerations of different nature (thermal, electromagnetic and mechanical), imposed stringent requirements on the WGs characteristics and drove their design. From the thermal point of view, the WG should guarantee good insulation between the FEM and the BEM sections to avoid overloading the cryocooler. On the other hand it is essential that the signals do not undergo excessive attenuation through the WG. Finally, given the different positions of the FEM modules behind the focal surface and the mechanical constraints given by the surrounding structures, different mechanical designs were necessary. A composite configuration of Stainless Steel and Copper was selected to satisfy all the requirements. Given the complex shape and the considerable length (about 1.5-2 m), manufacturing and testing the WGs was a challenge. This work deals with the development of the LFI WGs, including the choice of the final configuration and of the fabrication process. It also describes the testing procedure adopted to fully characterize these components from the electromagnetic point of view and the space qualification process they underwent. Results obtained during the test campaign are reported and compared with the stringent requirements. The performance of the LFI WGs is in line with requirements, and the WGs were successfully space qualified.
this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst The Low Frequency Instrument is optically interfaced with the ESA Planck telescope through 11 corrugated feed horns each c onnected to the Radiometer Chain Assembly (RCA). This paper describes the design, the manufacturing and the testing of the flight model feed horns. They have been designed to optimize the LFI optical interfaces taking into account the tight mechanical requirements imposed by the Planck focal plane layout. All the eleven units have been successfully tested and integrated with the Ortho Mode transducers.
The Low Frequency Instrument (LFI) of the ESA Planck CMB mission is an array of 22 ultra sensitive pseudocorrelation radiometers working at 30, 44, and 70 GHz. LFI has been calibrated and delivered for integration with the satellite to the European S pace Agency on November 2006. The aim of Planck is to measure the anisotropy and polarization of the Cosmic Background Radiation with a sensitivity and angular resolution never reached before over the full sky. LFI is intrinsically sensitive to polarization thanks to the use of Ortho-Mode Transducers (OMT) located between the feedhorns and the pseudo-correlation radiometers. The OMTs are microwave passive components that divide the incoming radiation into two linear orthogonal components. A set of 11 OMTs (2 at 30 GHz, 3 at 44 GHz, and 6 at 70 GHz) were produced and tested. This work describes the design, development and performance of the eleven Flight Model OMTs of LFI. The final design was reached after several years of development. At first, Elegant Bread Board OMTs were produced to investigate the manufacturing technology and design requirements. Then, a set of 3 Qualification Model (QM) OMTs were designed, manufactured and tested in order to freeze the design and the manufacturing technology for the flight units. Finally, the Flight Models were produced and tested. It is shown that all the OMT units have been accepted for flight and the electromagnetic performance is at least marginally compliant with the requirements. Mechanically, the units passed all the thermoelastic qualification tests after a reworking necessary after the QM campaign.
In this paper we discuss the linearity response of the Planck-LFI receivers, with particular reference to signal compression measured on the 30 and 44 GHz channels. In the article we discuss the various sources of compression and present a model that accurately describes data measured during tests performed with individual radiomeric chains. After discussing test results we present the best parameter set representing the receiver response and discuss the impact of non linearity on in-flight calibration, which is shown to be negligible.
A 3He sorption cooler produced the operational temperature of 285mK for the bolometer arrays of the Photodetector Array Camera and Spectrometer (PACS) instrument of the Herschel Space Observatory. This cooler provided a stable hold time between 60 an d 73h, depending on the operational conditions of the instrument. The respective hold time could be determined by a simple functional relation established early on in the mission and reliably applied by the scientific mission planning for the entire mission. After exhaustion of the liquid 3He due to the heat input by the detector arrays, the cooler was recycled for the next operational period following a well established automatic procedure. We give an overview of the cooler operations and performance over the entire mission and distinguishing in-between the start conditions for the cooler recycling and the two main modes of PACS photometer operations. As a spin-off, the cooler recycling temperature effects on the Herschel cryostat 4He bath were utilized as an alternative method to dedicated Direct Liquid Helium Content Measurements in determining the lifetime of the liquid Helium coolant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا