ترغب بنشر مسار تعليمي؟ اضغط هنا

Operations and Performance of the PACS Instrument 3He Sorption Cooler on board of the Herschel Space Observatory

157   0   0.0 ( 0 )
 نشر من قبل Marc Sauvage
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A 3He sorption cooler produced the operational temperature of 285mK for the bolometer arrays of the Photodetector Array Camera and Spectrometer (PACS) instrument of the Herschel Space Observatory. This cooler provided a stable hold time between 60 and 73h, depending on the operational conditions of the instrument. The respective hold time could be determined by a simple functional relation established early on in the mission and reliably applied by the scientific mission planning for the entire mission. After exhaustion of the liquid 3He due to the heat input by the detector arrays, the cooler was recycled for the next operational period following a well established automatic procedure. We give an overview of the cooler operations and performance over the entire mission and distinguishing in-between the start conditions for the cooler recycling and the two main modes of PACS photometer operations. As a spin-off, the cooler recycling temperature effects on the Herschel cryostat 4He bath were utilized as an alternative method to dedicated Direct Liquid Helium Content Measurements in determining the lifetime of the liquid Helium coolant.


قيم البحث

اقرأ أيضاً

The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESAs far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25 pixels, each, and two f illed silicon bolometer arrays with 16x32 and 32x64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210mu m wavelength regime. In photometry mode, it simultaneously images two bands, 60-85mu m or 85-125mum and 125-210mu m, over a field of view of ~1.75x3.5, with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47x47, resolved into 5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral resolution of ~175km/s. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the Performance Verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.
We present the activities carried out to calibrate and characterise the performance of the elements of attitude control and measurement on board the Herschel spacecraft. The main calibration parameters and the evolution of the indicators of the point ing performance are described, from the initial values derived from the observations carried out in the performance verification phase to those attained in the last year and half of mission, an absolute pointing error around or even below 1 arcsec, a spatial relative pointing error of some 1 arcsec and a pointing stability below 0.2 arsec. The actions carried out at the ground segment to improve the spacecraft pointing measurements are outlined. On-going and future developments towards a final refinement of the Herschel astrometry are also summarised. A brief description of the different components of the attitude control and measurement system (both in the space and in the ground segments) is also given for reference. We stress the importance of the cooperation between the different actors (scientists, flight dynamics and systems engineers, attitude control and measurement hardware designers, star-tracker manufacturers, etc.) to attain the final level of performance.
This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-0221 Two continuous closed-cycle hydrogen Joule-Thomson (J-T) sorption coolers have been fabricated and assembled by the Jet Propulsion Laboratory (JPL) for the European Space Agency (ESA) Planck mission. Each refrigerator has been designed to provide a total of ~ 1W of cooling power at two instrument interfaces: they directly cool the Planck Low Frequency Instrument (LFI) around 20K while providing a pre-cooling stage for a 4 K J-T mechanical refrigerator for the High Frequency Instrument (HFI). After sub-system level validation at JPL, the cryocoolers have been delivered to ESA in 2005. In this paper we present the results of the cryogenic qualification and test campaigns of the Nominal Unit on the flight model spacecraft performed at the CSL (Centre Spatial de Liege) facilities in 2008. Test results in terms of input power, cooling power, temperature, and temperature fluctuations over the flight allowable ranges for these interfaces are reported and analyzed with respect to mission requirements.
The X and Gamma Imaging Spectrometer instrument on-board the THESEUS mission (selected by ESA in the framework of the Cosmic Vision M5 launch opportunity, currently in phase A) is based on a detection plane composed of several thousands of single act ive elements. Each element comprises a 4.5x4.5x30 mm 3 CsI(Tl) scintillator bar, optically coupled at both ends to Silicon Drift Detectors (SDDs). The SDDs acts both as photodetectors for the scintillation light and as direct X-ray sensors. In this paper the design of the XGIS detection plane is reviewed, outlining the strategic choices in terms of modularity and redundancy of the system. Results on detector-electronics prototypes are also described. Moreover, the design and development of the low-noise front-end electronics is presented, emphasizing the innovative architectural design based on custom-designed Application-Specific Integrated Circuits (ASICs).
The Spectral and Photometric Imaging Receiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 microns, and an imaging Fourier Transform Spec trometer (FTS) which covers simultaneously its whole operating range of 194-671 microns (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4 x 8, observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا