ﻻ يوجد ملخص باللغة العربية
Approximate message passing algorithms proved to be extremely effective in reconstructing sparse signals from a small number of incoherent linear measurements. Extensive numerical experiments further showed that their dynamics is accurately tracked by a simple one-dimensional iteration termed state evolution. In this paper we provide the first rigorous foundation to state evolution. We prove that indeed it holds asymptotically in the large system limit for sensing matrices with independent and identically distributed gaussian entries. While our focus is on message passing algorithms for compressed sensing, the analysis extends beyond this setting, to a general class of algorithms on dense graphs. In this context, state evolution plays the role that density evolution has for sparse graphs. The proof technique is fundamentally different from the standard approach to density evolution, in that it copes with large number of short loops in the underlying factor graph. It relies instead on a conditioning technique recently developed by Erwin Bolthausen in the context of spin glass theory.
We consider the problem of recovering clustered sparse signals with no prior knowledge of the sparsity pattern. Beyond simple sparsity, signals of interest often exhibits an underlying sparsity pattern which, if leveraged, can improve the reconstruct
1-bit compressive sensing aims to recover sparse signals from quantized 1-bit measurements. Designing efficient approaches that could handle noisy 1-bit measurements is important in a variety of applications. In this paper we use the approximate mess
In this work, we analyze the failing sets of the interval-passing algorithm (IPA) for compressed sensing. The IPA is an efficient iterative algorithm for reconstructing a k-sparse nonnegative n-dimensional real signal x from a small number of linear
Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to desc
Generative neural networks have been empirically found very promising in providing effective structural priors for compressed sensing, since they can be trained to span low-dimensional data manifolds in high-dimensional signal spaces. Despite the non