ﻻ يوجد ملخص باللغة العربية
In this work, we analyze the failing sets of the interval-passing algorithm (IPA) for compressed sensing. The IPA is an efficient iterative algorithm for reconstructing a k-sparse nonnegative n-dimensional real signal x from a small number of linear measurements y. In particular, we show that the IPA fails to recover x from y if and only if it fails to recover a corresponding binary vector of the same support, and also that only positions of nonzero values in the measurement matrix are of importance for success of recovery. Based on this observation, we introduce termatiko sets and show that the IPA fails to fully recover x if and only if the support of x contains a nonempty termatiko set, thus giving a complete (graph-theoretic) description of the failing sets of the IPA. Finally, we present an extensive numerical study showing that in many cases there exist termatiko sets of size strictly smaller than the stopping distance of the binary measurement matrix; even as low as half the stopping distance in some cases.
In this work, we perform a complete failure analysis of the interval-passing algorithm (IPA) for compressed sensing, an efficient iterative algorithm for reconstructing a $k$-sparse nonnegative $n$-dimensional real signal $boldsymbol{x}$ from a small
Modern image and video compression codes employ elaborate structures existing in such signals to encode them into few number of bits. Compressed sensing recovery algorithms on the other hand use such signals structures to recover them from few linear
Approximate message passing (AMP) is an efficient iterative signal recovery algorithm for compressed sensing (CS). For sensing matrices with independent and identically distributed (i.i.d.) Gaussian entries, the behavior of AMP can be asymptotically
We consider the problem of sparse signal recovery from 1-bit measurements. Due to the noise present in the acquisition and transmission process, some quantized bits may be flipped to their opposite states. These sign flips may result in severe perfor
Evaluating the statistical dimension is a common tool to determine the asymptotic phase transition in compressed sensing problems with Gaussian ensemble. Unfortunately, the exact evaluation of the statistical dimension is very difficult and it has be