ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing Local Lorentz and Position Invariance and Variation of Fundamental Constants by searching the Derivative of the Comparison Frequency Between a Cryogenic Sapphire Oscillator and Hydrogen Maser

96   0   0.0 ( 0 )
 نشر من قبل Michael Edmund Tobar
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cryogenic sapphire oscillator (CSO) at the Paris Observatory has been continuously compared to various Hydrogen Masers since 2001. The early data sets were used to test Local Lorentz Invariance in the Robertson-Mansouri-Sexl (RMS) framework by searching for sidereal modulations with respect to the Cosmic Microwave Background, and represent the best Kennedy-Thorndike experiment to date. In this work we present continuous operation over a period of greater than six years from September 2002 to December 2008 and present a more precise way to analyze the data by searching the time derivative of the comparison frequency. Due to the long-term operation we are able to search both sidereal and annual modulations. The results gives P_{KT} = beta_{RMS}-alpha_{RMS}-1 = -1.7(4.0) times 10^{-8} for the sidereal and -23(10) times 10^{-8} for the annual term, with a weighted mean of -4.8(3.7) times 10^{-8}, a factor of 8 better than previous. Also, we analyze the data with respect to a change in gravitational potential for both diurnal and annual variations. The result gives beta_{H-Maser} - beta_{CSO} = -2.7(1.4) times 10^{-4} for the annual and -6.9(4.0) times 10^{-4} for the diurnal terms, with a weighted mean of -3.2(1.3) times 10^{-4}. This result is two orders of magnitude better than other tests that use electromagnetic resonators. With respect to fundamental constants a limit can be provided on the variation with ambient gravitational potential and boost of a combination of the fine structure constant (alpha), the normalized quark mass (m_q), and the electron to proton mass ratio (m_e/m_p), setting the first limit on boost dependence of order 10^{-10}.



قيم البحث

اقرأ أيضاً

222 - Xiao-yu Lu , Yu-Jie Tan , 2019
A more complete theoretical model of testing Lorentz violation by the comparison of atomic clocks is developed in the Robertson-Mansouri-Sexl kinematic framework. As this frame postulates the deviation of the coordinate transformation from the Lorent z transformation, from the viewpoint of the transformation violations on time and space, the LI violating effect in the atomic clock comparison can be explained as two parts: time-delay effect $alpha frac {v^2}{c^2}$ and structure effect $-frac {beta+2delta}{3} frac {v^2}{c^2}$. Standard model extension is a widely used dynamic frame to characterize the Lorentz violation, in which a space-orientation dependence violating background field is regarded as the essential reason for the Lorentz violation effect. Compared with the RMS frame which only indicates the kinematic properties with the coordinate transformation, this dynamic frame provides a more complete and clear description for the Lorentz violation effect.
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
The frequencies of three separate Cs fountain clocks and one Rb fountain clock have been compared to various hydrogen masers to search for periodic changes correlated with the changing solar gravitational potential at the Earth and boost with respect to the Cosmic Microwave Background (CMB) rest frame. The data sets span over more than eight years. The main sources of long-term noise in such experiments are the offsets and linear drifts associated with the various H-masers. The drift can vary from nearly immeasurable to as high as 1.3*10^-15 per day. To circumvent these effects we apply a numerical derivative to the data, which significantly reduces the standard error when searching for periodic signals. We determine a standard error for the putative Local Position Invariance (LPI) coefficient with respect to gravity for a Cs-Fountain H-maser comparison of 4.8*10^-6 and 10^-5 for a Rb-Fountain H-maser comparison. From the same data the putative boost LPI coefficients were measured to a precision of up to parts in 10^11 with respect to the CMB rest frame. By combining these boost invariance experiments to a Cryogenic Sapphire Oscillator versus H-maser comparison, independent limits on all nine coefficients of the boost violation vector with respect to fundamental constant invariance (fine structure constant, electron mass and quark mass respectively), were determined to a precision of parts up to 10^10.
84 - Kevin Cahill 2020
General relativity with fermions has two independent symmetries: general coordinate invariance and local Lorentz invariance. General coordinate invariance is implemented by the Levi-Civita connection and by Cartans tetrads both of which have as their action the Einstein-Hilbert action. It is suggested here that local Lorentz invariance is implemented not by a combination of the Levi-Civita connection and Cartans tetrads known as the spin connection, but by independent Lorentz bosons that gauge the Lorentz group, that couple to fermions like Yang-Mills fields, and that have their own Yang-Mills-like action. Because the Lorentz bosons couple to fermion number and not to mass, they generate a static potential that violates the weak equivalence principle. If a Higgs mechanism makes them massive, then the static potential also violates the inverse-square law. Experiments put upper bounds on the strength of such a potential for masses less than ~20 eV. These upper limits imply that Lorentz bosons, if they exist, are nearly stable and contribute to dark matter.
236 - Harald Fritzsch , Joan Sola 2015
The idea that the vacuum energy density $rho_{Lambda}$ could be time dependent is a most reasonable one in the expanding Universe; in fact, much more reasonable than just a rigid cosmological constant for the entire cosmic history. Being $rho_{Lambda }=rho_{Lambda}(t)$ dynamical, it offers a possibility to tackle the cosmological constant problem in its various facets. Furthermore, for a long time (most prominently since Diracs first proposal on a time variable gravitational coupling) the possibility that the fundamental constants of Nature are slowly drifting with the cosmic expansion has been continuously investigated. In the last two decades, and specially in recent times, mounting experimental evidence attests that this could be the case. In this paper, we consider the possibility that these two groups of facts might be intimately connected, namely that the observed acceleration of the Universe and the possible time variation of the fundamental constants are two manifestations of the same underlying dynamics. We call it: the micro and macro connection, and on its basis we expect that the cosmological term in Einsteins equations, Newtons coupling and the masses of all the particles in the Universe, both the dark matter particles and the ordinary baryons and leptons, should all drift with the cosmic expansion. Here we discuss specific cosmological models realizing such possibility in a way that preserves the principle of covariance of General Relativity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا