ﻻ يوجد ملخص باللغة العربية
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
Recently, first limits on putative Lorentz invariance violation coefficients in the pure gravity sector were determined by the reanalysis of short-range gravity experiments. Such experiments search for new physics at sidereal frequencies. They are no
Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-20
Precision measurements of the inverse-square law via experiments on short-range gravity provide sensitive tests of Lorentz symmetry. A combined analysis of data from experiments at the Huazhong University of Science and Technology and Indiana Univers
The cryogenic sapphire oscillator (CSO) at the Paris Observatory has been continuously compared to various Hydrogen Masers since 2001. The early data sets were used to test Local Lorentz Invariance in the Robertson-Mansouri-Sexl (RMS) framework by se
Hov{r}ava gravity is a attempt to construct a renormalizable theory of gravity by breaking the Lorentz Invariance of the gravitational action at high energies. The underlying principle is that Lorentz Invariance is an approximate symmetry and its vio