ﻻ يوجد ملخص باللغة العربية
We study the properties of the fundamental group of an affine curve over an algebraically closed field of characteristic $p$, from the point of view of embedding problems. In characteristic zero, the fundamental group is free, but in characteristic $p$ it is not even $omega$-free. In this paper we show that it is almost $omega$-free, in the sense that each finite embedding problem has a proper solution when restricted to some open subgroup. We also prove that embedding problems can always be properly solved over the given curve if suitably many additional branch points are allowed, in locations that can be specified arbitrarily; this strengthens a result of the first author.
The Cremona group is the group of birational transformations of the complex projective plane. In this paper we classify its subgroups that consist only of elliptic elements using elementary model theory. This yields in particular a description of the
We survey some principal results and open problems related to colorings of algebraic and geometric objects endowed with symmetries.
Let $k$ be an algebraically closed field of characteristic $p>0$ and let $C/k$ be a smooth connected affine curve. Denote by $pi_1(C)$ its algebraic fundamental group. The goal of this paper is to characterize a certain subset of closed normal subgro
The Poincare polynomial of a Weyl group calculates the Betti numbers of the projective homogeneous space $G/B$, while the $h$-vector of a simple polytope calculates the Betti numbers of the corresponding rationally smooth toric variety. There is a co
Let $pi_1(C)$ be the algebraic fundamental group of a smooth connected affine curve, defined over an algebraically closed field of characteristic $p>0$ of countable cardinality. Let $N$ be a normal (resp. characteristic) subgroup of $pi_1(C)$. Under