ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry and colorings: Some results and open problems

129   0   0.0 ( 0 )
 نشر من قبل Taras Banakh
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We survey some principal results and open problems related to colorings of algebraic and geometric objects endowed with symmetries.



قيم البحث

اقرأ أيضاً

A Gallai-coloring (Gallai-$k$-coloring) is an edge-coloring (with colors from ${1, 2, ldots, k}$) of a complete graph without rainbow triangles. Given a graph $H$ and a positive integer $k$, the $k$-colored Gallai-Ramsey number $GR_k(H)$ is the minim um integer $n$ such that every Gallai-$k$-coloring of the complete graph $K_n$ contains a monochromatic copy of $H$. In this paper, we consider two extremal problems related to Gallai-$k$-colorings. First, we determine upper and lower bounds for the maximum number of edges that are not contained in any rainbow triangle or monochromatic triangle in a $k$-edge-coloring of $K_n$. Second, for $ngeq GR_k(K_3)$, we determine upper and lower bounds for the minimum number of monochromatic triangles in a Gallai-$k$-coloring of $K_{n}$, yielding the exact value for $k=3$. Furthermore, we determine the Gallai-Ramsey number $GR_k(K_4+e)$ for the graph on five vertices consisting of a $K_4$ with a pendant edge.
A proper edge coloring of a graph $G$ with colors $1,2,dots,t$ is called a emph{cyclic interval $t$-coloring} if for each vertex $v$ of $G$ the edges incident to $v$ are colored by consecutive colors, under the condition that color $1$ is considered as consecutive to color $t$. We prove that a bipartite graph $G$ with even maximum degree $Delta(G)geq 4$ admits a cyclic interval $Delta(G)$-coloring if for every vertex $v$ the degree $d_G(v)$ satisfies either $d_G(v)geq Delta(G)-2$ or $d_G(v)leq 2$. We also prove that every Eulerian bipartite graph $G$ with maximum degree at most $8$ has a cyclic interval coloring. Some results are obtained for $(a,b)$-biregular graphs, that is, bipartite graphs with the vertices in one part all having degree $a$ and the vertices in the other part all having degree $b$; it has been conjectured that all these have cyclic interval colorings. We show that all $(4,7)$-biregular graphs as well as all $(2r-2,2r)$-biregular ($rgeq 2$) graphs have cyclic interval colorings. Finally, we prove that all complete multipartite graphs admit cyclic interval colorings; this settles in the affirmative, a conjecture of Petrosyan and Mkhitaryan.
We study the properties of the fundamental group of an affine curve over an algebraically closed field of characteristic $p$, from the point of view of embedding problems. In characteristic zero, the fundamental group is free, but in characteristic $ p$ it is not even $omega$-free. In this paper we show that it is almost $omega$-free, in the sense that each finite embedding problem has a proper solution when restricted to some open subgroup. We also prove that embedding problems can always be properly solved over the given curve if suitably many additional branch points are allowed, in locations that can be specified arbitrarily; this strengthens a result of the first author.
Coboundary and cosystolic expansion are notions of expansion that generalize the Cheeger constant or edge expansion of a graph to higher dimensions. The classical Cheeger inequality implies that for graphs edge expansion is equivalent to spectral exp ansion. In higher dimensions this is not the case: a simplicial complex can be spectrally expanding but not have high dimensional edge-expansion. The phenomenon of high dimensional edge expansion in higher dimensions is much more involved than spectral expansion, and is far from being understood. In particular, prior to this work, the only known bounded degree cosystolic expanders known were derived from the theory of buildings that is far from being elementary. In this work we study high dimensional complexes which are {em strongly symmetric}. Namely, there is a group that acts transitively on top dimensional cells of the simplicial complex [e.g., for graphs it corresponds to a group that acts transitively on the edges]. Using the strong symmetry, we develop a new machinery to prove coboundary and cosystolic expansion.
We exhibit a particular free subarrangement of a certain restriction of the Weyl arrangement of type $E_7$ and use it to give an affirmative answer to a recent conjecture by T.~Abe on the nature of additionally free and stair-free arrangements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا