ﻻ يوجد ملخص باللغة العربية
The Cremona group is the group of birational transformations of the complex projective plane. In this paper we classify its subgroups that consist only of elliptic elements using elementary model theory. This yields in particular a description of the structure of torsion subgroups. As an appliction, we prove the Tits alternative for arbitrary subgroups of the Cremona group, generalizing a result of Cantat. We also describe solvable subgroups of the Cremona group and their derived length, refining results from Deserti.
We show that if a group automorphism of a Cremona group of arbitrary rank is also a homeomorphism with respect to either the Zariski or the Euclidean topology, then it is inner up to a field automorphism of the base-field. Moreover, we show that a si
Let $pi_1(C)$ be the algebraic fundamental group of a smooth connected affine curve, defined over an algebraically closed field of characteristic $p>0$ of countable cardinality. Let $N$ be a normal (resp. characteristic) subgroup of $pi_1(C)$. Under
We give a presentation of the plane Cremona group over an algebraically closed field with respect to the generators given by the Theorem of Noether and Castelnuovo. This presentation is particularly simple and can be used for explicit calculations.
For each d we construct CAT(0) cube complexes on which Cremona groups rank d act by isometries. From these actions we deduce new and old group theoretical and dynamical results about Cremona groups. In particular, we study the dynamical behaviour of
Let $G$ be a connected, absolutely almost simple, algebraic group defined over a finitely generated, infinite field $K$, and let $Gamma$ be a Zariski dense subgroup of $G(K)$. We show, apart from some few exceptions, that the commensurability class o