ﻻ يوجد ملخص باللغة العربية
The {em longest common subsequence (LCS)} problem is a classic and well-studied problem in computer science. LCS is a central problem in stringology and finds broad applications in text compression, error-detecting codes and biological sequence comparison. However, in numerous contexts, words represent cyclic sequences of symbols and LCS must be generalized to consider all circular shifts of the strings. This occurs especially in computational biology when genetic material is sequenced form circular DNA or RNA molecules. This initiates the problem of {em longest common cyclic subsequence (LCCS)} which finds the longest subsequence between all circular shifts of two strings. In this paper, we give an $O(n^2)$ algorithm for solving LCCS problem where $n$ is the number of symbols in the strings.
We consider the classic problem of computing the Longest Common Subsequence (LCS) of two strings of length $n$. While a simple quadratic algorithm has been known for the problem for more than 40 years, no faster algorithm has been found despite an ex
In this work, we consider a variant of the classical Longest Common Subsequence problem called Doubly-Constrained Longest Common Subsequence (DC-LCS). Given two strings s1 and s2 over an alphabet A, a set C_s of strings, and a function Co from A to N
At CPM 2017, Castelli et al. define and study a new variant of the Longest Common Subsequence Problem, termed the Longest Filled Common Subsequence Problem (LFCS). For the LFCS problem, the input consists of two strings $A$ and $B$ and a multiset of
In this paper, we study edit distance (ED) and longest common subsequence (LCS) in the asymmetric streaming model, introduced by Saks and Seshadhri [SS13]. As an intermediate model between the random access model and the streaming model, this model a
Tree comparison metrics have proven to be an invaluable aide in the reconstruction and analysis of phylogenetic (evolutionary) trees. The path-length distance between trees is a particularly attractive measure as it reflects differences in tree shape