ﻻ يوجد ملخص باللغة العربية
Tree comparison metrics have proven to be an invaluable aide in the reconstruction and analysis of phylogenetic (evolutionary) trees. The path-length distance between trees is a particularly attractive measure as it reflects differences in tree shape as well as differences between branch lengths. The distance equals the sum, over all pairs of taxa, of the squared differences between the lengths of the unique path connecting them in each tree. We describe an $O(n log n)$ time for computing this distance, making extensive use of tree decomposition techniques introduced by Brodal et al. (2004).
The {em longest common subsequence (LCS)} problem is a classic and well-studied problem in computer science. LCS is a central problem in stringology and finds broad applications in text compression, error-detecting codes and biological sequence compa
In the Survivable Network Design problem (SNDP), we are given an undirected graph $G(V,E)$ with costs on edges, along with a connectivity requirement $r(u,v)$ for each pair $u,v$ of vertices. The goal is to find a minimum-cost subset $E^*$ of edges,
In population protocols, the underlying distributed network consists of $n$ nodes (or agents), denoted by $V$, and a scheduler that continuously selects uniformly random pairs of nodes to interact. When two nodes interact, their states are updated by
This paper considers the online machine minimization problem, a basic real time scheduling problem. The setting for this problem consists of n jobs that arrive over time, where each job has a deadline by which it must be completed. The goal is to des
Consider a metric space $(P,dist)$ with $N$ points whose doubling dimension is a constant. We present a simple, randomized, and recursive algorithm that computes, in $O(N log N)$ expected time, the closest-pair distance in $P$. To generate recursive