ﻻ يوجد ملخص باللغة العربية
At CPM 2017, Castelli et al. define and study a new variant of the Longest Common Subsequence Problem, termed the Longest Filled Common Subsequence Problem (LFCS). For the LFCS problem, the input consists of two strings $A$ and $B$ and a multiset of characters $mathcal{M}$. The goal is to insert the characters from $mathcal{M}$ into the string $B$, thus obtaining a new string $B^*$, such that the Longest Common Subsequence (LCS) between $A$ and $B^*$ is maximized. Casteli et al. show that the problem is NP-hard and provide a 3/5-approximation algorithm for the problem. In this paper we study the problem from the experimental point of view. We introduce, implement and test new heuristic algorithms and compare them with the approximation algorithm of Casteli et al. Moreover, we introduce an Integer Linear Program (ILP) model for the problem and we use the state of the art ILP solver, Gurobi, to obtain exact solution for moderate sized instances.
In this work, we consider a variant of the classical Longest Common Subsequence problem called Doubly-Constrained Longest Common Subsequence (DC-LCS). Given two strings s1 and s2 over an alphabet A, a set C_s of strings, and a function Co from A to N
In this paper, we study edit distance (ED) and longest common subsequence (LCS) in the asymmetric streaming model, introduced by Saks and Seshadhri [SS13]. As an intermediate model between the random access model and the streaming model, this model a
We consider the classic problem of computing the Longest Common Subsequence (LCS) of two strings of length $n$. While a simple quadratic algorithm has been known for the problem for more than 40 years, no faster algorithm has been found despite an ex
Longest Run Subsequence is a problem introduced recently in the context of the scaffolding phase of genome assembly (Schrinner et al., WABI 2020). The problem asks for a maximum length subsequence of a given string that contains at most one run for e
The {em longest common subsequence (LCS)} problem is a classic and well-studied problem in computer science. LCS is a central problem in stringology and finds broad applications in text compression, error-detecting codes and biological sequence compa