ﻻ يوجد ملخص باللغة العربية
We study linear gravitational perturbations of Schwarzschild spacetime by solving numerically Regge-Wheeler-Zerilli equations in time domain using hyperboloidal surfaces and a compactifying radial coordinate. We stress the importance of including the asymptotic region in the computational domain in studies of gravitational radiation. The hyperboloidal approach should be helpful in a wide range of applications employing black hole perturbation theory.
We study the spectrum of the bound state perturbations in the interior of the Schwarzschild black hole for the scalar, electromagnetic and gravitational perturbations. Demanding that the perturbations to be regular at the center of the black hole det
Acoustic black hole is becoming an attractive topic in recent years, for it open-up new direction for experimental explorations of black holes in laboratories. In this work, the gravitational bending of acoustic Schwarzschild black hole is investigat
We present the first numerical construction of the scalar Schwarzschild Green function in the time-domain, which reveals several universal features of wave propagation in black hole spacetimes. We demonstrate the trapping of energy near the photon sp
The analysis of gravitino fields in curved spacetimes is usually carried out using the Newman-Penrose formalism. In this paper we consider a more direct approach with eigenspinor-vectors on spheres, to separate out the angular parts of the fields in
Adopting the throat quantization pioneered by Louko and Makela, we derive the mass and area spectra for the Schwarzschild-Tangherlini black hole and its anti-de~Sitter (AdS) generalization in arbitrary dimensions. We obtain exact spectra in three spe