ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitino fields in Schwarzschild black hole spacetimes

149   0   0.0 ( 0 )
 نشر من قبل Alan Cornell
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The analysis of gravitino fields in curved spacetimes is usually carried out using the Newman-Penrose formalism. In this paper we consider a more direct approach with eigenspinor-vectors on spheres, to separate out the angular parts of the fields in a Schwarzschild background. The radial equations of the corresponding gauge invariant variable obtained are shown to be the same as in the Newman-Penrose formalism. These equations are then applied to the evaluation of the quasinormal mode frequencies, as well as the absorption probabilities of the gravitino field scattering in this background.



قيم البحث

اقرأ أيضاً

We consider the motion of massive and massless particles in a five-dimensional spacetime with a compactified extra-dimensional space where a black hole is localized, i.e., a caged black hole spacetime. We show the existence of circular orbits and rev eal their sequences and stability. In the asymptotic region, stable circular orbits always exist, which implies that four-dimensional gravity is more dominant because of the small extra-dimensional space. In the vicinity of a black hole, they do not exist because the effect of compactification is no longer effective. We also clarify the dependence of the sequences of circular orbits on the size of the extra-dimensional space by determining the appearance of the innermost stable circular orbit and the last circular orbit (i.e., the unstable photon circular orbit).
The extendibility of spacetime and the existence of weak solutions to the Einstein field equations beyond Cauchy horizons, is a crucial ingredient to examine the limits of General Relativity. Strong Cosmic Censorship serves as a firewall for gravitat ion by demanding inextendibility of spacetime beyond the Cauchy horizon. For asymptotically flat spacetimes, the predominance of the blueshift instability and the subsequent formation of a mass-inflation singularity at the Cauchy horizon have, so far, substantiated the conjecture. Accelerating black holes, described by the $C-$metric, are exact solutions of the field equations without a cosmological constant, which possess an acceleration horizon with similar causal properties to the cosmological horizon of de Sitter spacetime. Here, by considering linear scalar field perturbations, we provide numerical evidence for the stability of the Cauchy horizon of charged accelerating black holes. In particular, we show that the stability of Cauchy horizons in accelerating charged black holes is connected to quasinormal modes, we discuss the regularity requirement for which weak solutions to the field equations exist at the Cauchy horizon and show that Strong Cosmic Censorship may be violated near extremality.
155 - Adam Levi , Amos Ori 2016
We report here on a new method for calculating the renormalized stress-energy tensor (RSET) in black-hole (BH) spacetimes, which should also be applicable to dynamical BHs and to spinning BHs. This new method only requires the spacetime to admit a si ngle symmetry. So far we developed three variants of the method, aimed for stationary, spherically symmetric, or axially symmetric BHs. We used this method to calculate the RSET of a minimally-coupled massless scalar field in Schwarzschild and Reissner-Nordstrom backgrounds, for several quantum states. We present here the results for the RSET in the Schwarzschild case in Unruh state (the state describing BH evaporation). The RSET is type I at weak field, and becomes type IV at $rlesssim2.78M$. Then we use the RSET results to explore violation of the weak and null Energy conditions. We find that both conditions are violated all the way from $rsimeq4.9M$ to the horizon. We also find that the averaged weak energy condition is violated by a class of (unstable) circular timelike geodesics. Most remarkably, the circular null geodesic at $r=3M$ violates the averaged null energy condition.
We present the detailed analyses of a model of loop quantum Schwarzschild interior coupled to a massless scalar field and extend the results in our previous rapid communication arXiv:2006.08313 to more general schemes. It is shown that the spectrum o f the black hole mass is discrete and does not contain zero. This indicates the existence of a black hole remnant after Hawking evaporation due to loop quantum gravity effects. Besides to show the existence of a stable black hole remnant in the vacuum case, the quantum dynamics for the non-vacuum case is also solved and compared with the effective one.
157 - G. Menezes 2015
We consider radiative processes of a quantum system composed by two identical two-level atoms in a black-hole background. We assume that these identical two-level atoms are placed at fixed radial distances outside a Schwarzschild black hole and inter acting with a quantum electromagnetic field prepared in one of the usual vacuum states, namely the Boulware, Unruh or the Hartle-Hawking vacuum states. We study the structure of the rate of variation of the atomic energy. The intention is to identify in a quantitative way the contributions of vacuum fluctuations and radiation reaction to the entanglement generation between the atoms as well as the degradation of entangled states in the presence of an event horizon. We find that for a finite observation time the atoms can become entangled for the case of the field in the Boulware vacuum state, even if they are initially prepared in a separable state. In addition, the rate of variation of atomic energy is not well behaved at the event horizon due to the behavior of the proper accelerations of the atoms. We show that the thermal nature of the Hartle-Hawking and Unruh vacuum state allows the atoms to get entangled even if they were initially prepared in the separable ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا