ﻻ يوجد ملخص باللغة العربية
The analysis of gravitino fields in curved spacetimes is usually carried out using the Newman-Penrose formalism. In this paper we consider a more direct approach with eigenspinor-vectors on spheres, to separate out the angular parts of the fields in a Schwarzschild background. The radial equations of the corresponding gauge invariant variable obtained are shown to be the same as in the Newman-Penrose formalism. These equations are then applied to the evaluation of the quasinormal mode frequencies, as well as the absorption probabilities of the gravitino field scattering in this background.
We consider the motion of massive and massless particles in a five-dimensional spacetime with a compactified extra-dimensional space where a black hole is localized, i.e., a caged black hole spacetime. We show the existence of circular orbits and rev
The extendibility of spacetime and the existence of weak solutions to the Einstein field equations beyond Cauchy horizons, is a crucial ingredient to examine the limits of General Relativity. Strong Cosmic Censorship serves as a firewall for gravitat
We report here on a new method for calculating the renormalized stress-energy tensor (RSET) in black-hole (BH) spacetimes, which should also be applicable to dynamical BHs and to spinning BHs. This new method only requires the spacetime to admit a si
We present the detailed analyses of a model of loop quantum Schwarzschild interior coupled to a massless scalar field and extend the results in our previous rapid communication arXiv:2006.08313 to more general schemes. It is shown that the spectrum o
We consider radiative processes of a quantum system composed by two identical two-level atoms in a black-hole background. We assume that these identical two-level atoms are placed at fixed radial distances outside a Schwarzschild black hole and inter