ترغب بنشر مسار تعليمي؟ اضغط هنا

Jammed frictionless discs: connecting local and global response

281   0   0.0 ( 0 )
 نشر من قبل Wouter G. Ellenbroek
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By calculating the linear response of packings of soft frictionless discs to quasistatic external perturbations, we investigate the critical scaling behavior of their elastic properties and non-affine deformations as a function of the distance to jamming. Averaged over an ensemble of similar packings, these systems are well described by elasticity, while in single packings we determine a diverging length scale $ell^*$ up to which the response of the system is dominated by the local packing disorder. This length scale, which we observe directly, diverges as $1/Delta z$, where $Delta z$ is the difference between contact number and its isostatic value, and appears to scale identically to the length scale which had been introduced earlier in the interpretation of the spectrum of vibrational modes. It governs the crossover from isostatic behavior at the small scale to continuum behavior at the large scale; indeed we identify this length scale with the coarse graining length needed to obtain a smooth stress field. We characterize the non-affine displacements of the particles using the emph{displacement angle distribution}, a local measure for the amount of relative sliding, and analyze the connection between local relative displacements and the elastic moduli.



قيم البحث

اقرأ أيضاً

Force chains, which are quasi-linear self-organised structures carrying large stresses, are ubiquitous in jammed amorphous materials, such as granular materials, foams, emulsions or even assemblies of cells. Predicting where they will form upon mecha nical deformation is crucial in order to describe the physical properties of such materials, but remains an open question. Here we demonstrate that graph neural networks (GNN) can accurately infer the location of these force chains in frictionless materials from the local structure prior to deformation, without receiving any information about the inter-particle forces. Once trained on a prototypical system, the GNN prediction accuracy proves to be robust to changes in packing fraction, mixture composition, amount of deformation, and the form of the interaction potential. The GNN is also scalable, as it can make predictions for systems much larger than those it was trained on. Our results and methodology will be of interest for experimental realizations of granular matter and jammed disordered systems, e.g. in cases where direct visualisation of force chains is not possible or contact forces cannot be measured.
We compare the elastic response of spring networks whose contact geometry is derived from real packings of frictionless discs, to networks obtained by randomly cutting bonds in a highly connected network derived from a well-compressed packing. We fin d that the shear response of packing-derived networks, and both the shear and compression response of randomly cut networks, are all similar: the elastic moduli vanish linearly near jamming, and distributions characterizing the local geometry of the response scale with distance to jamming. Compression of packing-derived networks is exceptional: the elastic modulus remains constant and the geometrical distributions do not exhibit simple scaling. We conclude that the compression response of jammed packings is anomalous, rather than the shear response.
At low volume fraction, disordered arrangements of frictionless spheres are found in un--jammed states unable to support applied stresses, while at high volume fraction they are found in jammed states with mechanical strength. Here we show, focusing on the hard sphere zero pressure limit, that the transition between un-jammed and jammed states does not occur at a single value of the volume fraction, but in a whole volume fraction range. This result is obtained via the direct numerical construction of disordered jammed states with a volume fraction varying between two limits, $0.636$ and $0.646$. We identify these limits with the random loose packing volume fraction $rl$ and the random close packing volume fraction $rc$ of frictionless spheres, respectively.
Athermal systems across a large range of length scales, ranging from foams and granular bead packings to crumpled metallic sheets, exhibit slow stress relaxation when compressed. Experimentally they show a non-monotonic stress response when decompres sed somewhat after an initial compression, i.e. under a two-step, Kovacs-like protocol. It turns out that from this response one can tell the age of the system, suggesting an interpretation as a memory effect. In this work we use a model of an athermal jammed solid, specifically a binary mixture of soft harmonic spheres, to explore this phenomenon through in-silico experiments. Using extensive simulations under conditions analogous to those in experiment, we observe identical phenomenology in the stress response under a two--step protocol. Our model system also recovers the behaviour under a more recently studied three-step protocol, which consists of a compression followed by a decompression and then a final compression. We show that the observed response in both two-step and three-step protocols can be understood using Linear Response Theory. In particular, a linear scaling with age for the two-step protocol arises generically for slow linear responses with power law or logarithmic decay and does not in itself point to any underlying aging dynamics.
We perform computational studies of repulsive, frictionless disks to investigate the development of stress anisotropy in mechanically stable (MS) packings. We focus on two protocols for generating MS packings: 1) isotropic compression and 2) applied simple or pure shear strain $gamma$ at fixed packing fraction $phi$. MS packings of frictionless disks occur as geometric families (i.e. parabolic segments with positive curvature) in the $phi$-$gamma$ plane. MS packings from protocol 1 populate parabolic segments with both signs of the slope, $dphi/dgamma >0$ and $dphi/dgamma <0$. In contrast, MS packings from protocol 2 populate segments with $dphi/dgamma <0$ only. For both simple and pure shear, we derive a relationship between the stress anisotropy and dilatancy $dphi/dgamma$ obeyed by MS packings along geometrical families. We show that for MS packings prepared using isotropic compression, the stress anisotropy distribution is Gaussian centered at zero with a standard deviation that decreases with increasing system size. For shear jammed MS packings, the stress anisotropy distribution is a convolution of Weibull distributions that depend on strain, which has a nonzero average and standard deviation in the large-system limit. We also develop a framework to calculate the stress anisotropy distribution for packings generated via protocol 2 in terms of the stress anisotropy distribution for packings generated via protocol 1. These results emphasize that for repulsive frictionless disks, different packing-generation protocols give rise to different MS packing probabilities, which lead to differences in macroscopic properties of MS packings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا