ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotational spectroscopy of AlO: Low N transitions of astronomical interest in the X^2 Sigma^+ state

47   0   0.0 ( 0 )
 نشر من قبل Dipankar P. K. Banerjee
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of rotational transitions of the AlO radical at millimeter wavelengths from an astronomical source has recently been reported. In view of this, rotational transitions in the ground X^2 Sigma^+ state of AlO have been reinvestigated. Comparisons between Fourier transform and microwave data indicate a discrepancy regarding the derived value of gamma_D in the v = 0 level of the ground state. This discrepancy is discussed in the light of comparisons between experimental data and synthesized rotational spectra in the v = 0, 1 and 2 levels of X^2 Sigma^+. A list of calculated rotational lines in v = 0, 1 and 2 of the ground state up to N = 11 is presented which should aid astronomers in analysis and interpretation of observed AlO data and also facilitate future searches for this radical.

قيم البحث

اقرأ أيضاً

Rotational transitions in vibrationally excited AlO and TiO -- two possible precursors of dust -- were observed in the 300 GHz range (1 mm wavelength) towards the oxygen rich AGB stars R Dor and IK Tau with ALMA, and vibrationally excited AlO was obs erved towards the red supergiant VY CMa with the SMA. The $J=11 to 10$ transition of TiO in the $v=1~{rm{and}}~2$ levels, and the $N = 9 to 8$ transition in the $v=2$ level of AlO were identified towards R Dor; the $J=11 to 10$ line of TiO was identified in the $v=1$ level towards IK Tau; and two transitions in the $v=1~{rm{and}}~2$ levels of AlO were identified towards VY CMa. The newly-derived high vibrational temperature of TiO and AlO in R Dor of $1800 pm 200$ K, and prior measurements of the angular extent confirm that the majority of the emission is from a region within $lesssim2R_{star}$ of the central star. A full radiative transfer analysis of AlO in R Dor yielded a fractional abundance of $sim$3% of the solar abundance of Al. From a similar analysis of TiO a fractional abundance of $sim78$% of the solar abundance of Ti was found. The observations provide indirect evidence that TiO is present in a rotating disk close to the star. Further observations in the ground and excited vibrational levels are needed to determine whether AlO, TiO, and TiO$_2$ are seeds of the Al$_2$O$_3$ dust in R Dor, and perhaps in the gravitationally bound dust shells in other AGB stars with low mass loss rates.
Raman scattering enables unforeseen uses for the laser guide-star system of the Very Large Telescope. Here, we present the observation of one up-link sodium laser beam acquired with the ESPRESSO spectrograph at a resolution $lambda/Deltalambda sim 14 0000$. In 900s on-source, we detect the pure rotational Raman lines of $^{16}$O$_2$, $^{14}$N$_2$, and $^{14}$N$^{15}$N (tentatively) up to rotational quantum numbers $J$ of 27, 24, and 9, respectively. We detect the $^{16}$O$_2$ fine-structure lines induced by the interaction of the electronic spin textbf{S} and end-over-end rotational angular momentum textbf{N} in the electronic ground state of this molecule up to $N=9$. The same spectrum also reveals the $ u_{1leftarrow0}$ rotational-vibrational Q-branch for $^{16}$O$_2$ and $^{14}$N$_2$. These observations demonstrate the potential of using laser guide-star systems as accurate calibration sources for characterizing new astronomical spectrographs.
We present high-quality, medium resolution X-shooter/VLT spectra in the range 300-2500 nm for a sample of 12 very low-mass stars in the sigma Orionis cluster. The sample includes stars with masses ranging from 0.08 to 0.3 M$_odot$. The aim of this fi rst paper is to investigate the reliability of the many accretion tracers currently used to measure the mass accretion rate in low-mass, young stars. We use our spectra to measure the accretion luminosity from the continuum excess emission in the UV and visual; the derived mass accretion rates range from 10$^{-9}$ M$_{odot}$ yr$^{-1}$ down to 5$times10^{-11}$ M$_{odot}$ yr$^{-1}$, allowing us to investigate the behavior of the accretion-driven emission lines in very-low mass accretion rate regimes. We compute the luminosity of ten accretion-driven emission lines, from the UV to the near-IR, obtained simultaneously. Most of the secondary tracers correlate well with the accretion luminosity derived from the continuum excess emission. We confirm the validity of the correlations between accretion luminosities and line luminosities given in the literature, with the possible exception of Halpha. When looking at individual objects, we find that the Hydrogen recombination lines, from the UV to the near-IR, give good and consistent measurements of accretion luminosities, often in better agreement than the uncertainties introduced by the adopted correlations. The average accretion luminosity derived from several Hydrogen lines, measured simultaneously, have a much reduced error. This suggests that some of the spread in the literature correlations may be due to the use of non-simultaneous observations of lines and continuum. Three stars in our sample deviate from this behavior, and we discuss them individually.
We report on measurements of the binding energies of several weakly bound vibrational states of the paramagnetic $^{174}$Yb$^{6}$Li molecule in the electronic ground state using two-photon spectroscopy in an ultracold atomic mixture confined in an op tical dipole trap. We theoretically analyze the experimental spectrum to obtain an accurate description of the long-range potential of the ground state molecule. Based on the measured binding energies, we arrive at an improved value of the interspecies $s$-wave scattering length $a_{s0}=30$ $a_0$. Employing coherent two-photon spectroscopy we also observe the creation of dark atom-molecule superposition states in the heteronuclear Yb-Li system. This work is an important step towards the efficient production of ultracold YbLi molecules via association from an ultracold atomic mixture.
For all the amides detected in the interstellar medium (ISM), the corresponding nitriles or isonitriles have also been detected in the ISM, some of which have relatively high abundances. Among the abundant nitriles for which the corresponding amide h as not yet been detected is cyanoacetylene (HCCCN), whose amide counterpart is propiolamide (HCCC(O)NH$_2$). With the aim of supporting searches for this amide in the ISM, we provide a complete rotational study of propiolamide from 6 GHz to 440 GHz using rotational spectroscopic techniques in the frequency and time domain. We identified and measured more than 5500 distinct frequency lines of propiolamide and obtained accurate sets of spectroscopic parameters for the ground state and the three low-lying excited vibrational states. We used the ReMoCA spectral line survey performed with the Atacama Large Millimeter/submillimeter Array toward the star-forming region Sgr B2(N) to search for propiolamide. We report the nondetection of propiolamide toward the hot cores Sgr B2(N1S) and Sgr B2(N2). We find that propiolamide is at least 50 and 13 times less abundant than acetamide in Sgr B2(N1S) and Sgr B2(N2), respectively, indicating that the abundance difference between both amides is more pronounced by at least a factor of 8 and 2, respectively, than for their corresponding nitriles. Although propiolamide has yet to be included in astrochemical modeling networks, the observed upper limit to the ratio of propiolamide to acetamide seems consistent with the ratios of related species as determined from past simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا