ترغب بنشر مسار تعليمي؟ اضغط هنا

X-shooter spectroscopy of young stellar objects: I - Mass accretion rates of low-mass T Tauri stars in sigma Orionis

273   0   0.0 ( 0 )
 نشر من قبل Elisabetta Rigliaco
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-quality, medium resolution X-shooter/VLT spectra in the range 300-2500 nm for a sample of 12 very low-mass stars in the sigma Orionis cluster. The sample includes stars with masses ranging from 0.08 to 0.3 M$_odot$. The aim of this first paper is to investigate the reliability of the many accretion tracers currently used to measure the mass accretion rate in low-mass, young stars. We use our spectra to measure the accretion luminosity from the continuum excess emission in the UV and visual; the derived mass accretion rates range from 10$^{-9}$ M$_{odot}$ yr$^{-1}$ down to 5$times10^{-11}$ M$_{odot}$ yr$^{-1}$, allowing us to investigate the behavior of the accretion-driven emission lines in very-low mass accretion rate regimes. We compute the luminosity of ten accretion-driven emission lines, from the UV to the near-IR, obtained simultaneously. Most of the secondary tracers correlate well with the accretion luminosity derived from the continuum excess emission. We confirm the validity of the correlations between accretion luminosities and line luminosities given in the literature, with the possible exception of Halpha. When looking at individual objects, we find that the Hydrogen recombination lines, from the UV to the near-IR, give good and consistent measurements of accretion luminosities, often in better agreement than the uncertainties introduced by the adopted correlations. The average accretion luminosity derived from several Hydrogen lines, measured simultaneously, have a much reduced error. This suggests that some of the spread in the literature correlations may be due to the use of non-simultaneous observations of lines and continuum. Three stars in our sample deviate from this behavior, and we discuss them individually.



قيم البحث

اقرأ أيضاً

The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star forming region carried out using the VLT/X-Sh ooter spectrograph. The sample is nearly complete down to M~0.1Msun for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broad-band flux-calibrated medium resolution spectrum. The correlation between the accretion luminosity to the stellar luminosity, and of the mass accretion rate to the stellar mass in the logarithmic plane yields slopes of 1.9 and 2.3, respectively. These slopes and the accretion rates are consistent with previous results in various star forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity smaller than ~0.45 Lsun and for stellar masses smaller than ~ 0.3 Msun, is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane empty of objects. One at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second one is just above the observational limits imposed by chromospheric emission. This empty region is located at M~0.3-0.4Msun, typical masses where photoevaporation is known to be effective, and at mass accretion rates ~10^-10 Msun/yr, a value compatible with the one expected for photoevaporation to rapidly dissipate the inner disk.
We present the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-Shooter spectrograp h. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class~II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, Lacc, increases with the stellar luminosity, Lstar, with an overall slope of ~1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below Lstar~0.1Lsun, where Lacc is always lower than 0.01Lstar. We argue that the Lacc-Lstar slope is not due to observational biases, but is a true property of the Lupus YSOs. The logMacc-logMstar correlation shows a statistically significant evidence of a break, with a steeper relation for Mstar<0.2Msun and a flatter slope for higher masses. The bimodality of the Macc-Mstar relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo evaporation and planet formation during the YSOs lifetime, may also lead to disc dispersal on different timescales depending on the stellar mass. We also refined the empirical Lacc vs. Lline relationships.
We have studied numerically the evolution of protostellar disks around intermediate and upper mass T Tauri stars (0.25 M_sun < M_st < 3.0 M_sun) that have formed self-consistently from the collapse of molecular cloud cores. In the T Tauri phase, disk s settle into a self-regulated state, with low-amplitude nonaxisymmetric density perturbations persisting for at least several million years. Our main finding is that the global effect of gravitational torques due to these perturbations is to produce disk accretion rates that are of the correct magnitude to explain observed accretion onto T Tauri stars. Our models yield a correlation between accretion rate M_dot and stellar mass M_st that has a best fit M_dot propto M_st^{1.7}, in good agreement with recent observations. We also predict a near-linear correlation between the disk accretion rate and the disk mass.
We have analysed the [OI]6300 A line in a sample of 131 young stars with discs in the Lupus, Chamaeleon and signa Orionis star forming regions, observed with the X-shooter spectrograph at VLT. The stars have mass accretion rates spanning from 10^{-12 } to 10^{-7} Mo/yr. The line profile was deconvolved into a low velocity component (LVC, < 40 km/s) and a high velocity component (HVC, > 40 km/s ), originating from slow winds and high velocity jets, respectively. The LVC is by far the most frequent component, with a detection rate of 77%, while only 30% of sources have a HVC. The [OI]6300 luminosity of both the LVC and HVC, when detected, correlates with stellar and accretion parameters of the central sources (i.e. Lstar , Mstar , Lacc , Macc), with similar slopes for the two components. The line luminosity correlates better with the accretion luminosity than with the stellar luminosity or stellar mass. We suggest that accretion is the main drivers for the line excitation and that MHD disc-winds are at the origin of both components. In the sub-sample of Lupus sources observed with ALMA a relationship is found between the HVC peak velocity and the outer disc inclination angle, as expected if the HVC traces jets ejected perpendicularly to the disc plane. Mass loss rates measured from the HVC span from ~ 10^{-13} to ~10^{-7} Mo/yr. The corresponding Mloss/Macc ratio ranges from ~0.01 to ~0.5, with an average value of 0.07. However, considering the upper limits on the HVC, we infer a ratio < 0.03 in more than 40% of sources. We argue that most of these sources might lack the physical conditions needed for an efficient magneto-centrifugal acceleration in the star-disc interaction region. Systematic observations of populations of younger stars, that is, class 0/I, are needed to explore how the frequency and role of jets evolve during the pre-main sequence phase.
162 - C.F. Manara , L. Testi (2 , 3 2015
We present new VLT/X-Shooter optical and NIR spectra of a sample of 17 candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived SpT and Av for all the targets, and then we determined their physical parameters. All the objects bu t one have M*<0.6 Msun, and 8 have mass below or close to the hydrogen-burning limit. Using the intensity of various emission lines present in their spectra, we determined the Lacc and Macc for all the objects. When compared with previous works targeting the same sample, we find that, in general, these objects are not as strongly accreting as previously reported, and we suggest that the reason is our more accurate estimate of the photospheric parameters. We also compare our findings with recent works in other slightly older star-forming regions to investigate possible differences in the accretion properties, but we find that the accretion properties for our targets have the same dependence on the stellar and substellar parameters as in the other regions. This leads us to conclude that we do not find evidence for a different dependence of Macc with M* when comparing low-mass stars and BDs. Moreover, we find a similar small (1 dex) scatter in the Macc-M* relation as in some of our recent works in other star-forming regions, and no significant differences in Macc due to different ages or properties of the regions. The latter result suffers, however, from low statistics and sample selection biases in the current studies. The small scatter in the Macc-M* correlation confirms that Macc in the literature based on uncertain photospheric parameters and single accretion indicators, such as the Ha width, can lead to a scatter that is unphysically large. Our studies show that only broadband spectroscopic surveys coupled with a detailed analysis of the photospheric and accretion properties allows us to properly study the evolution of disk accretion rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا