ﻻ يوجد ملخص باللغة العربية
In this paper, we show how concentration inequalities for Gaussian quadratic form can be used to propose exact confidence intervals of the Hurst index parametrizing a fractional Brownian motion. Both cases where the scaling parameter of the fractional Brownian motion is known or unknown are investigated. These intervals are obtained by observing a single discretized sample path of a fractional Brownian motion and without any assumption on the parameter $H$.
In this presentation, we introduce a new method for change point analysis on the Hurst index for a piecewise fractional Brownian motion. We first set the model and the statistical problem. The proposed method is a transposition of the FDpV (Filtered
Diffusive transport in many complex systems features a crossover between anomalous diffusion at short times and normal diffusion at long times. This behavior can be mathematically modeled by cutting off (tempering) beyond a mesoscopic correlation tim
In this paper, we will construct the Malliavin derivative and the stochastic integral with respect to the Mixed fractional Brownian motion (mfbm) for H > 1/2. As an application, we try to estimate the drift parameter via Malliavin derivative for surplus process with mixed fractional Brownian motion
In some non-regular statistical estimation problems, the limiting likelihood processes are functionals of fractional Brownian motion (fBm) with Hursts parameter H; 0 < H <=? 1. In this paper we present several analytical and numerical results on the
The recent paper Simple confidence intervals for MCMC without CLTs by J.S. Rosenthal, showed the derivation of a simple MCMC confidence interval using only Chebyshevs inequality, not CLT. That result required certain assumptions about how the estimat