ﻻ يوجد ملخص باللغة العربية
Diffusive transport in many complex systems features a crossover between anomalous diffusion at short times and normal diffusion at long times. This behavior can be mathematically modeled by cutting off (tempering) beyond a mesoscopic correlation time the power-law correlations between the increments of fractional Brownian motion. Here, we investigate such tempered fractional Brownian motion confined to a finite interval by reflecting walls. Specifically, we explore how the tempering of the long-time correlations affects the strong accumulation and depletion of particles near reflecting boundaries recently discovered for untempered fractional Brownian motion. We find that exponential tempering introduces a characteristic size for the accumulation and depletion zones but does not affect the functional form of the probability density close to the wall. In contrast, power-law tempering leads to more complex behavior that differs between the superdiffusive and subdiffusive cases.
We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Levy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first pas
Fractional Brownian motion is a Gaussian stochastic process with stationary, long-time correlated increments and is frequently used to model anomalous diffusion processes. We study numerically fractional Brownian motion confined to a finite interval
Tempered fractional Brownian motion is revisited from the viewpoint of reduced fractional Ornstein-Uhlenbeck process. Many of the basic properties of the tempered fractional Brownian motion can be shown to be direct consequences or modifications of t
We find the exact winding number distribution of Riemann-Liouville fractional Brownian motion for large times in two dimensions using the propagator of a free particle. The distribution is similar to the Brownian motion case and it is of Cauchy type.
Fractional Brownian motion is a non-Markovian Gaussian process indexed by the Hurst exponent $Hin [0,1]$, generalising standard Brownian motion to account for anomalous diffusion. Functionals of this process are important for practical applications a