ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast change point analysis on the Hurst index of piecewise fractional Brownian motion

160   0   0.0 ( 0 )
 نشر من قبل Mehdi Fhima
 تاريخ النشر 2011
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this presentation, we introduce a new method for change point analysis on the Hurst index for a piecewise fractional Brownian motion. We first set the model and the statistical problem. The proposed method is a transposition of the FDpV (Filtered Derivative with p-value) method introduced for the detection of change points on the mean in Bertrand et al. (2011) to the case of changes on the Hurst index. The underlying statistics of the FDpV technology is a new statistic estimator for Hurst index, so-called Increment Bernoulli Statistic (IBS). Both FDpV and IBS are methods with linear time and memory complexity, with respect to the size of the series. Thus the resulting method for change point analysis on Hurst index reaches also a linear complexity.



قيم البحث

اقرأ أيضاً

In this paper, we show how concentration inequalities for Gaussian quadratic form can be used to propose exact confidence intervals of the Hurst index parametrizing a fractional Brownian motion. Both cases where the scaling parameter of the fractiona l Brownian motion is known or unknown are investigated. These intervals are obtained by observing a single discretized sample path of a fractional Brownian motion and without any assumption on the parameter $H$.
In some non-regular statistical estimation problems, the limiting likelihood processes are functionals of fractional Brownian motion (fBm) with Hursts parameter H; 0 < H <=? 1. In this paper we present several analytical and numerical results on the moments of Pitman estimators represented in the form of integral functionals of fBm. We also provide Monte Carlo simulation results for variances of Pitman and asymptotic maximum likelihood estimators.
We discuss some extensions of results from the recent paper by Chernoyarov et al. (Ann. Inst. Stat. Math., October 2016) concerning limit distributions of Bayesian and maximum likelihood estimators in the model signal plus white noise with irregular cusp-type signals. Using a new representation of fractional Brownian motion (fBm) in terms of cusp functions we show that as the noise intensity tends to zero, the limit distributions are expressed in terms of fBm for the full range of asymmetric cusp-type signals correspondingly with the Hurst parameter H, 0<H<1. Simulation results for the densities and variances of the limit distributions of Bayesian and maximum likelihood estimators are also provided.
In this paper, we will construct the Malliavin derivative and the stochastic integral with respect to the Mixed fractional Brownian motion (mfbm) for H > 1/2. As an application, we try to estimate the drift parameter via Malliavin derivative for surplus process with mixed fractional Brownian motion
We study statistical inference for small-noise-perturbed multiscale dynamical systems where the slow motion is driven by fractional Brownian motion. We develop statistical estimators for both the Hurst index as well as a vector of unknown parameters in the model based on a single time series of observations from the slow process only. We prove that these estimators are both consistent and asymptotically normal as the amplitude of the perturbation and the time-scale separation parameter go to zero. Numerical simulations illustrate the theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا