ترغب بنشر مسار تعليمي؟ اضغط هنا

The Baryonic Acoustic Feature and Large-Scale Clustering in the SDSS LRG Sample

190   0   0.0 ( 0 )
 نشر من قبل Eyal Kazin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the correlation function xi of the Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy sample (LRG) at large scales (60<s<400 Mpc/h) using the final data release (DR7; 105,831 LRGs between 0.16<z<0.47). Using mock catalogs, we demonstrate that the observed baryonic acoustic peak and larger scale signal are consistent with LCDM at the 1.5sigma level. The signal at 155<s<200 Mpc/h tends to be high relative to theoretical expectations; this slight deviation can be attributed to a bright subsample of the LRGs. Fitting data to a non-linear, redshift-space, template based-model, we constrain the peak position at s_p=103.6+3.6-2.4 Mpc/h when fitting the range 60<s<150 Mpc/h (1sigma uncertainties measured from the mocks. This redshift-space distance s_p is related to the comoving sound horizon scale r_s after taking into account matter clustering non-linearities, redshift distortions and galaxy clustering bias. Mock catalogs show that the probability that a DR7-sized sample would not have an identifiable peak is at least 10%. As a consistency check of a fiducial cosmology, we use the observed s_p to obtain the distance D_V=[(1+z)^2D_A^2cz/H(z)]^(1/3) relative to the acoustic scale. We find r_s/D_V(z=0.278)=0.1394+-0.0049. This result is in excellent agreement with Percival et. al (2009), who examine roughly the same data set, but using the power spectrum. Comparison with other determinations in the literature are also in very good agreement. We have tested our results against a battery of possible systematic effects, finding all effects are smaller than our estimated sample variance.



قيم البحث

اقرأ أيضاً

We report five measurements of the transverse baryonic acoustic scale, $theta_{BAO}$, obtained from the angular two-point correlation function calculation for Luminous Red Galaxies of the eleventh data release of the Sloan Digital Sky Survey (SDSS). Each measurement has been obtained by considering a thin redshift shell ($delta z = 0.01$ and $0.02$) in the interval $ z in [0.565, 0.660] $, which contains a large density of galaxies ($sim 20,000$ galaxies/redshift shell). Differently from the three-dimensional Baryon Acoustic Oscillations (BAO) measurements, these data points are obtained almost model-independently and provide a Cosmic Microwave Background (CMB)-independent way to estimate the sound horizon $ r_s $. Assuming a time-dependent equation-of-state parameter for the dark energy, we also discuss constraints on the main cosmological parameters from $theta_{BAO}$ and CMB data.
We analyze the anisotropic clustering of the Sloan Digital Sky Survey-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) Luminous Red Galaxy Data Release 14 (DR14) sample combined with Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sam ple of galaxies in the redshift range 0.6$<z<$1.0, which consists of 80,118 galaxies from eBOSS and 46,439 galaxies from the BOSS-CMASS sample. The eBOSS-CMASS Luminous Red Galaxy sample has a sky coverage of 1,844 deg$^2$, with an effective volume of 0.9 Gpc$^3$. The analysis was made in configuration space using a Legendre multipole expansion. The Redshift Space Distortion signal is modeled as a combination of the Convolution Lagrangian Perturbation Model and the Gaussian Streaming Model. We constrain the logarithmic growth of structure times the amplitude of dark matter density fluctuations, $f (z_{rm eff})sigma_8(z_{rm eff})=0.454 pm0.139 $, and the Alcock-Paczynski dilation scales which constraints the angular diameter distance $D_A(z_{eff})=1466.5 pm 136.6 (r_s/r_s^{rm fid})$ and $H(z_{rm eff})=105.8 pm 16 (r_s^{rm fid}/r_s) mathrm{km,s^{-1},Mpc^{-1}}$, where $r_s$ is the sound horizon at the end of the baryon drag epoch and $r_s^{rm fid}$ is its value in the fiducial cosmology at an effective redshift $z_{rm eff}=0.72$. These results are in full agreement with the current $Lambda$-Cold Dark Matter ($Lambda$-CDM) cosmological model inferred from Planck measurements. This study is the first eBOSS LRG full-shape analysis i.e. including Redshift-Space Distortions (RSD) simultaneously with the Alcock-Paczynski (AP) effect and the Baryon Acoustic Oscillation (BAO) scale.
We measure the projected spatial correlation function w_p(r_p) from a large sample combining GALEX ultraviolet imaging with the SDSS spectroscopic sample. We study the dependence of the clustering strength for samples selected on (NUV - r)_abs color, specific star formation rate (SSFR), and stellar mass. We find that there is a smooth transition in the clustering of galaxies as a function of this color from weak clustering among blue galaxies to stronger clustering for red galaxies. The clustering of galaxies within the green valley has an intermediate strength, and is consistent with that expected from galaxy groups. The results are robust to the correction for dust extinction. The comparison with simple analytical modeling suggests that the halo occupation number increases with older star formation epochs. When splitting according to SSFR, we find that the SSFR is a more sensitive tracer of environment than stellar mass.
General relativistic effects have long been predicted to subtly influence the observed large-scale structure of the universe. The current generation of galaxy redshift surveys have reached a size where detection of such effects is becoming feasible. In this paper, we report the first detection of the redshift asymmetry from the cross-correlation function of two galaxy populations which is consistent with relativistic effects. The dataset is taken from the Sloan Digital Sky Survey DR12 CMASS galaxy sample, and we detect the asymmetry at the $2.7sigma$ level by applying a shell-averaged estimator to the cross-correlation function. Our measurement dominates at scales around $10$ h$^{-1}$Mpc, larger than those over which the gravitational redshift profile has been recently measured in galaxy clusters, but smaller than scales for which linear perturbation theory is likely to be accurate. The detection significance varies by 0.5$sigma$ with the details of our measurement and tests for systematic effects. We have also devised two null tests to check for various survey systematics and show that both results are consistent with the null hypothesis. We measure the dipole moment of the cross-correlation function, and from this the asymmetry is also detected, at the $2.8 sigma$ level. The amplitude and scale-dependence of the clustering asymmetries are approximately consistent with the expectations of General Relativity and a biased galaxy population, within large uncertainties. We explore theoretical predictions using numerical simulations in a companion paper.
NoAM for No Action Method is a framework for reconstructing the past orbits of observed tracers of the large scale mass density field. It seeks exact solutions of the equations of motion (EoM), satisfying initial homogeneity and the final observed pa rticle (tracer) positions. The solutions are found iteratively reaching a specified tolerance defined as the RMS of the distance between reconstructed and observed positions. Starting from a guess for the initial conditions, NoAM advances particles using standard N-body techniques for solving the EoM. Alternatively, the EoM can be replaced by any approximation such as Zeldovich and second order perturbation theory (2LPT). NoAM is suitable for billions of particles and can easily handle non-regular volumes, redshift space, and other constraints. We implement NoAM to systematically compare Zeldovich, 2LPT, and N-body dynamics over diverse configurations ranging from idealized high-res periodic simulation box to realistic galaxy mocks. Our findings are (i) Non-linear reconstructions with Zeldovich, 2LPT, and full dynamics perform better than linear theory only for idealized catalogs in real space. For realistic catalogs, linear theory is the optimal choice for reconstructing velocity fields smoothed on scales > 5 Mpc/h. (ii) all non-linear back-in-time reconstructions tested here, produce comparable enhancement of the baryonic oscillation signal in the correlation function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا