ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial Clustering from GALEX-SDSS samples: Star Formation History and large-scale clustering

105   0   0.0 ( 0 )
 نشر من قبل Sebastien Heinis
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the projected spatial correlation function w_p(r_p) from a large sample combining GALEX ultraviolet imaging with the SDSS spectroscopic sample. We study the dependence of the clustering strength for samples selected on (NUV - r)_abs color, specific star formation rate (SSFR), and stellar mass. We find that there is a smooth transition in the clustering of galaxies as a function of this color from weak clustering among blue galaxies to stronger clustering for red galaxies. The clustering of galaxies within the green valley has an intermediate strength, and is consistent with that expected from galaxy groups. The results are robust to the correction for dust extinction. The comparison with simple analytical modeling suggests that the halo occupation number increases with older star formation epochs. When splitting according to SSFR, we find that the SSFR is a more sensitive tracer of environment than stellar mass.

قيم البحث

اقرأ أيضاً

(Abridged) We detect the large-scale structure of Lya emission in the Universe at redshifts z=2-3.5 by measuring the cross-correlation of Lya surface brightness with quasars in SDSS/BOSS. We use a million spectra targeting Luminous Red Galaxies at z< 0.8, after subtracting a best fit model galaxy spectrum from each one, as an estimate of the high-redshift Lya surface brightness. The quasar-Lya emission cross-correlation we detect has a shape consistent with a LambdaCDM model with Omega_M =0.30^+0.10-0.07. The predicted amplitude of this cross-correlation is proportional to the product of the mean Lya surface brightness, <mu_alpha>, the amplitude of mass fluctuations, and the quasar and Lya emission bias factors. Using known values, we infer <mu_alpha>(b_alpha/3) = (3.9 +/- 0.9) x 10^-21 erg/s cm^-2 A^-1 arcsec^-2, where b_alpha is the Lya emission bias factor. If the dominant sources of Lya emission are star forming galaxies, we infer rho_SFR = (0.28 +/- 0.07) (3/b_alpha) /yr/Mpc^3 at z=2-3.5. For b_alpha=3, this value is a factor of 21-35 above previous estimates from individually detected Lya emitters, although consistent with the total rho_SFR derived from dust-corrected, continuum UV surveys. 97% of the Lya emission in the Universe at these redshifts is therefore undetected in previous surveys of Lya emitters. Our measurement is much greater than seen from stacking analyses of faint halos surrounding previously detected Lya emitters, but we speculate that it arises from similar Lya halos surrounding all luminous star-forming galaxies. We also detect redshift space anisotropy of the quasar-Lya emission cross-correlation, finding evidence at the 3.0 sigma level that it is radially elongated, consistent with distortions caused by radiative-transfer effects (Zheng et al. (2011)). Our measurements represent the first application of the intensity mapping technique to optical observations.
The present paper analyses the quasar clustering using the two-point correlation function (2pCF) and the largest existing sample of photometrically selected quasars: the SDSS NBCKDE catalogue (from the SDSS DR6). A new technique of random catalogue g eneration was developed for this purpose, that allows to take into account the original homogeneity of the survey without knowledge of its imaging mask. When averaged over photometrical redshifts 0.8<z_phot<2.2 the 2pCF of photometrically selected quasars is found to be approximated well with the power law w(theta)=(theta/theta_0)^{-alpha} with theta_0=4.5+/-1.4, alpha=0.94+/-0.06 over the range 1<theta<40. It agrees well with previous results by Myers et al. (2006,2007), obtained for samples of NBCKDE quasars with similar mean z_phot, but averaged over broader z_phot range. The parameters of the deprojected 2pCF averaged over the same z_phot range and modelled with a power law xi(r)=(r/r_0)^{-gamma}, are r_0=7.81^{+1.18}_{-1.16} Mpc/h, gamma=1.94+/-0.06, which are in perfect agreement with previous results from spectroscopic surveys. We confirm the evidence for an increase of the clustering amplitude with z, and find no evidence for luminosity dependence of the quasar clustering. The latter is consistent with the models of the quasar formation, in which bright and faint quasars are assumed to be similar sources, hosted by dark matter halos of similar masses, but observed at different stages of their evolution. Comparison of our results with studies of the X-ray selected AGNs with similar z shows that the clustering amplitude of optically selected quasars is similar to that of X-ray selected quasars, but lower than that of samples of all X-ray selected AGNs. As the samples of all X-ray selected AGNs contain AGNs of both types, our result serves as an evidence for different types of AGNs to reside in different environments.
We examine the correlation function xi of the Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy sample (LRG) at large scales (60<s<400 Mpc/h) using the final data release (DR7; 105,831 LRGs between 0.16<z<0.47). Using mock catalogs, we demonstrate that the observed baryonic acoustic peak and larger scale signal are consistent with LCDM at the 1.5sigma level. The signal at 155<s<200 Mpc/h tends to be high relative to theoretical expectations; this slight deviation can be attributed to a bright subsample of the LRGs. Fitting data to a non-linear, redshift-space, template based-model, we constrain the peak position at s_p=103.6+3.6-2.4 Mpc/h when fitting the range 60<s<150 Mpc/h (1sigma uncertainties measured from the mocks. This redshift-space distance s_p is related to the comoving sound horizon scale r_s after taking into account matter clustering non-linearities, redshift distortions and galaxy clustering bias. Mock catalogs show that the probability that a DR7-sized sample would not have an identifiable peak is at least 10%. As a consistency check of a fiducial cosmology, we use the observed s_p to obtain the distance D_V=[(1+z)^2D_A^2cz/H(z)]^(1/3) relative to the acoustic scale. We find r_s/D_V(z=0.278)=0.1394+-0.0049. This result is in excellent agreement with Percival et. al (2009), who examine roughly the same data set, but using the power spectrum. Comparison with other determinations in the literature are also in very good agreement. We have tested our results against a battery of possible systematic effects, finding all effects are smaller than our estimated sample variance.
136 - Ariel G. Sanchez 2009
We apply a new model for the spherically averaged correlation function at large pair separations to the measurement of the clustering of luminous red galaxies (LRGs) made from the SDSS by Cabre and Gaztanaga(2009). Our model takes into account the fo rm of the BAO peak and the large scale shape of the correlation function. We perform a Monte Carlo Markov chain analysis for different combinations of datasets and for different parameter sets. When used in combination with a compilation of the latest CMB measurements, the LRG clustering and the latest supernovae results give constraints on cosmological parameters which are comparable and in remarkably good agreement, resolving the tension reported in some studies. The best fitting model in the context of a flat, Lambda-CDM cosmology is specified by Omega_m=0.261+-0.013, Omega_b=0.044+-0.001, n_s=0.96+-0.01, H_0=71.6+-1.2 km/s/Mpc and sigma_8=0.80+-0.02. If we allow the time-independent dark energy equation of state parameter to vary, we find results consistent with a cosmological constant at the 5% level using all data sets: w_DE=-0.97+-0.05. The large scale structure measurements by themselves can constrain the dark energy equation of state parameter to w_DE=-1.05+-0.15, independently of CMB or supernovae data. We do not find convincing evidence for an evolving equation of state. We provide a set of extended distance priors that contain the most relevant information from the CMB power spectrum and the shape of the LRG correlation function which can be used to constrain dark energy models and spatial curvature. Our model should provide an accurate description of the clustering even in much larger, forthcoming surveys, such as those planned with NASAs JDEM or ESAs Euclid mission.
General relativistic effects have long been predicted to subtly influence the observed large-scale structure of the universe. The current generation of galaxy redshift surveys have reached a size where detection of such effects is becoming feasible. In this paper, we report the first detection of the redshift asymmetry from the cross-correlation function of two galaxy populations which is consistent with relativistic effects. The dataset is taken from the Sloan Digital Sky Survey DR12 CMASS galaxy sample, and we detect the asymmetry at the $2.7sigma$ level by applying a shell-averaged estimator to the cross-correlation function. Our measurement dominates at scales around $10$ h$^{-1}$Mpc, larger than those over which the gravitational redshift profile has been recently measured in galaxy clusters, but smaller than scales for which linear perturbation theory is likely to be accurate. The detection significance varies by 0.5$sigma$ with the details of our measurement and tests for systematic effects. We have also devised two null tests to check for various survey systematics and show that both results are consistent with the null hypothesis. We measure the dipole moment of the cross-correlation function, and from this the asymmetry is also detected, at the $2.8 sigma$ level. The amplitude and scale-dependence of the clustering asymmetries are approximately consistent with the expectations of General Relativity and a biased galaxy population, within large uncertainties. We explore theoretical predictions using numerical simulations in a companion paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا