ترغب بنشر مسار تعليمي؟ اضغط هنا

The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 < z < 1.0

121   0   0.0 ( 0 )
 نشر من قبل Miguel Icaza-Lizaola Mr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the anisotropic clustering of the Sloan Digital Sky Survey-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) Luminous Red Galaxy Data Release 14 (DR14) sample combined with Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample of galaxies in the redshift range 0.6$<z<$1.0, which consists of 80,118 galaxies from eBOSS and 46,439 galaxies from the BOSS-CMASS sample. The eBOSS-CMASS Luminous Red Galaxy sample has a sky coverage of 1,844 deg$^2$, with an effective volume of 0.9 Gpc$^3$. The analysis was made in configuration space using a Legendre multipole expansion. The Redshift Space Distortion signal is modeled as a combination of the Convolution Lagrangian Perturbation Model and the Gaussian Streaming Model. We constrain the logarithmic growth of structure times the amplitude of dark matter density fluctuations, $f (z_{rm eff})sigma_8(z_{rm eff})=0.454 pm0.139 $, and the Alcock-Paczynski dilation scales which constraints the angular diameter distance $D_A(z_{eff})=1466.5 pm 136.6 (r_s/r_s^{rm fid})$ and $H(z_{rm eff})=105.8 pm 16 (r_s^{rm fid}/r_s) mathrm{km,s^{-1},Mpc^{-1}}$, where $r_s$ is the sound horizon at the end of the baryon drag epoch and $r_s^{rm fid}$ is its value in the fiducial cosmology at an effective redshift $z_{rm eff}=0.72$. These results are in full agreement with the current $Lambda$-Cold Dark Matter ($Lambda$-CDM) cosmological model inferred from Planck measurements. This study is the first eBOSS LRG full-shape analysis i.e. including Redshift-Space Distortions (RSD) simultaneously with the Alcock-Paczynski (AP) effect and the Baryon Acoustic Oscillation (BAO) scale.



قيم البحث

اقرأ أيضاً

We present the clustering measurements of quasars in configuration space based on the Data Release 14 (DR14) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey. This dataset includes 148,659 quasars spread over the re dshift range $0.8leq z leq 2.2$ and spanning 2112.9 square degrees. We use the Convolution Lagrangian Perturbation Theory (CLPT) approach with a Gaussian Streaming (GS) model for the redshift space distortions of the correlation function and demonstrate its applicability for dark matter halos hosting eBOSS quasar tracers. At the effective redshift $z_{rm eff} = 1.52$, we measure the linear growth rate of structure $fsigma_{8}(z_{rm eff})= 0.426 pm 0.077$, the expansion rate $H(z_{rm eff})= 159^{+12}_{-13}(r_{s}^{rm fid}/r_s){rm km.s}^{-1}.{rm Mpc}^{-1}$, and the angular diameter distance $D_{A}(z_{rm eff})=1850^{+90}_{-115},(r_s/r_{s}^{rm fid}){rm Mpc}$, where $r_{s}$ is the sound horizon at the end of the baryon drag epoch and $r_{s}^{rm fid}$ is its value in the fiducial cosmology. The quoted errors include both systematic and statistical contributions. The results on the evolution of distances are consistent with the predictions of flat $Lambda$-Cold Dark Matter ($Lambda$-CDM) cosmology with Planck parameters, and the measurement of $fsigma_{8}$ extends the validity of General Relativity (GR) to higher redshifts($z>1$) This paper is released with companion papers using the same sample. The results on the cosmological parameters of the studies are found to be in very good agreement, providing clear evidence of the complementarity and of the robustness of the first full-shape clustering measurements with the eBOSS DR14 quasar sample.
We present the anisotropic clustering of emission line galaxies (ELGs) from the Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16). Our sample is composed of 173,736 ELGs covering an area of 1170 deg$^2$ over the redshift range $0.6 leq z leq 1.1$. We use the Convolution Lagrangian Perturbation Theory in addition to the Gaussian Streaming Redshift-Space Distortions to model the Legendre multipoles of the anisotropic correlation function. We show that the eBOSS ELG correlation function measurement is affected by the contribution of a radial integral constraint that needs to be modelled to avoid biased results. To mitigate the effect from unknown angular systematics, we adopt a modified correlation function estimator that cancels out the angular modes from the clustering. At the effective redshift, $z_{rm eff}=0.85$, including statistical and systematical uncertainties, we measure the linear growth rate of structure $fsigma_8(z_{rm eff}) = 0.35pm0.10$, the Hubble distance $D_H(z_{rm eff})/r_{rm drag} = 19.1^{+1.9}_{-2.1}$ and the comoving angular diameter distance $D_M(z_{rm eff})/r_{rm drag} = 19.9pm1.0$. These results are in agreement with the Fourier space analysis, leading to consensus values of: $fsigma_8(z_{rm eff}) = 0.315pm0.095$, $D_H(z_{rm eff})/r_{rm drag} = 19.6^{+2.2}_{-2.1}$ and $D_M(z_{rm eff})/r_{rm drag} = 19.5pm1.0$, consistent with $Lambda$CDM model predictions with Planck parameters.
We develop a new method, which is based on the optimal redshift weighting scheme, to extract the maximal tomographic information of baryonic acoustic oscillations (BAO) and redshift space distortions (RSD) from the extended Baryon Oscillation Spectro scopic Survey (eBOSS) Data Release 14 quasar (DR14Q) survey. We validate our method using the EZ mocks, and apply our pipeline to the eBOSS DR14Q sample in the redshift range of $0.8<z<2.2$. We report a joint measurement of $fsigma_8$ and two-dimensional BAO parameters $D_{rm A}$ and $H$ at four effective redshifts of $z_{rm eff}=0.98, 1.23, 1.52$ and $1.94$, and provide the full data covariance matrix. Using our measurement combined with BOSS DR12, MGS and 6dFGS BAO measurements, we find that the existence of dark energy is supported by observations at a $7.4sigma$ significance level. Combining our measurement with BOSS DR12 and Planck observations, we constrain the gravitational growth index to be $gamma=0.580pm0.082$, which is fully consistent with the prediction of general relativity. This paper is part of a set that analyses the eBOSS DR14 quasar sample.
We present the cosmological analysis of the configuration-space anisotropic clustering in the completed Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) DR16 galaxy sample. This sample consists of luminou s red galaxies (LRGs) spanning the redshift range $0.6 < z < 1$, at an effective redshift of $z_{rm eff}=0.698$. It combines 174 816 eBOSS LRGs and 202 642 BOSS CMASS galaxies. We extract and model the baryon acoustic oscillations (BAO) and redshift-space distortions (RSD) features from the galaxy two-point correlation function to infer geometrical and dynamical cosmological constraints. The adopted methodology is extensively tested on a set of realistic simulations. The correlations between the inferred parameters from the BAO and full-shape correlation function analyses are estimated. This allows us to derive joint constraints on the three cosmological parameter combinations: $D_M(z)/r_d$, $D_H(z)/r_d$ and $fsigma_8(z)$, where $D_M$ is the comoving angular diameter distance, $D_H$ is Hubble distance, $r_d$ is the comoving BAO scale, $f$ is the linear growth rate of structure, and $sigma_8$ is the amplitude of linear matter perturbations. After combining the results with those from the parallel power spectrum analysis of Gil-Marin et al. 2020, we obtain the constraints: $D_M/r_d = 17.65 pm 0.30$, $D_H/r_d = 19.77 pm 0.47$, $fsigma_8 = 0.473 pm 0.044$. These measurements are consistent with a flat $Lambda$CDM model with standard gravity.
We present a void clustering analysis in configuration-space using the completed Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) DR16 samples. These samples consist of Luminous Red Galaxies (LRG) combine d with the high redshift tail of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) DR12 CMASS galaxies (called as LRG+CMASS sample), Emission Line Galaxies (ELG) and quasars (QSO). We build void catalogues from the three eBOSS DR16 samples using a ZOBOV-based algorithm, providing 2,814 voids, 1,801 voids and 4,347 voids in the LRG+CMASS, ELG and QSO samples, respectively, spanning the redshift range $0.6<z<2.2$. We measure the redshift space distortions (RSD) around voids using the anisotropic void-galaxy cross-correlation function and we extract the distortion parameter $beta$. We test the methodology on realistic simulations before applying it to the data, and we investigate all our systematic errors on these mocks. We find $beta^{rm LRG}(z=0.74)=0.415pm0.087$, $beta^{rm ELG}(z=0.85)=0.665pm0.125$ and $beta^{rm QSO}(z=1.48)=0.313pm0.134$, for the LRG+CMASS, ELG and QSO sample, respectively. The quoted errors include systematic and statistical contributions. In order to convert our measurements in terms of the growth rate $fsigma_8$, we use consensus values of linear bias from the eBOSS DR16 companion papers~citep{eBOSScosmo}, resulting in the following constraints: $fsigma_8(z=0.74)=0.50pm0.11$, $fsigma_8(z=0.85)=0.52pm0.10$ and $fsigma_8(z=1.48)=0.30pm0.13$. Our measurements are consistent with other measurements from eBOSS DR16 using conventional clustering techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا