ترغب بنشر مسار تعليمي؟ اضغط هنا

MMTF: The Maryland-Magellan Tunable Filter

118   0   0.0 ( 0 )
 نشر من قبل Sylvain Veilleux
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes the Maryland-Magellan Tunable Filter (MMTF) on the Magellan-Baade 6.5-meter telescope. MMTF is based on a 150-mm clear aperture Fabry-Perot (FP) etalon that operates in low orders and provides transmission bandpass and central wavelength adjustable from ~5 to ~15 A and from ~5000 to over ~9200 A, respectively. It is installed in the Inamori Magellan Areal Camera and Spectrograph (IMACS) and delivers an image quality of ~0.5 over a field of view of 27 in diameter (monochromatic over ~10). This versatile and easy-to-operate instrument has been used over the past three years for a wide variety of projects. This paper first reviews the basic principles of FP tunable filters, then provides a detailed description of the hardware and software associated with MMTF and the techniques developed to observe with this instrument and reduce the data. The main lessons learned in the course of the commissioning and implementation of MMTF are highlighted next, before concluding with a brief outlook on the future of MMTF and of similar facilities which are soon coming on line.



قيم البحث

اقرأ أيضاً

This paper presents a new Tunable Filter Instrument for the SOAR telescope. The Brazilian Tunable Filter Imager (BTFI) is a versatile, new technology, tunable optical imager to be used in seeing-limited mode and at higher spatial fidelity using the S AM Ground-Layer Adaptive Optics facility at the SOAR telescope. The instrument opens important new science capabilities for the SOAR community, from studies of the centers of nearby galaxies and the insterstellar medium to statistical cosmological investigations. The BTFI takes advantage of three new technologies. The imaging Bragg Tunable Filter concept utilizes Volume Phase Holographic Gratings in a double-pass configuration, as a tunable filter, while a new Fabry-Perot (FP) concept involves technologies which allow a single FP etalon to act over a large range of interference orders and spectral resolutions. Both technologies will be in the same instrument. Spectral resolutions spanning the range between 25 and 30,000 can be achieved through the use of iBTF at low resolution and scanning FPs beyond R ~2,000. The third new technologies in BTFI is the use of EMCCDs for rapid and cyclically wavelength scanning thus mitigating the damaging effect of atmospheric variability through data acquisition. An additional important feature of the instrument is that it has two optical channels which allow for the simultaneous recording of the narrow-band, filtered image with the remaining (complementary) broad-band light. This avoids the uncertainties inherent in tunable filter imaging using a single detector. The system was designed to supply tunable filter imaging with a field-of-view of 3 arcmin on a side, sampled at 0.12 for direct Nasmyth seeing-limited area spectroscopy and for SAMs visitor instrument port for GLAO-fed area spectroscopy. The instrument has seen first light, as a SOAR visitor instrument. It is now in comissioning phase.
The MMT and Magellan infrared spectrograph (MMIRS) is a cryogenic multiple slit spectrograph operating in the wavelength range 0.9-2.4 micron. MMIRS refractive optics offer a 6.9 by 6.9 arcmin field of view for imaging with a spatial resolution of 0. 2 arcsec per pixel on a HAWAII-2 array. For spectroscopy, MMIRS can be used with long slits up to 6.9 arcmin long, or with custom slit masks having slitlets distributed over a 4 by 6.9 arcmin area. A range of dispersers offer spectral resolutions of 800 to 3000. MMIRS is designed to be used at the f/5 foci of the MMT or Magellan Clay 6.5m telescopes. MMIRS was commissioned in 2009 at the MMT and has been in routine operation at the Magellan Clay Telescope since 2010. MMIRS is being used for a wide range of scientific investigations from exoplanet atmospheres to Ly-alpha emitters.
We described the design and operation principles of a new tunable-filter photometer developed for the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the 2.5-m telescope of the Sternberg Astronomical Inst itute of the Moscow State University. The instrument is mounted on the scanning Fabry-Perot interferometer operating in the tunable-filter mode in the spectral range of 460-800 nm with a typical spectral resolution of about 1.3 nm. It allows one to create images of galactic and extragalactic nebulae in the emission lines having different excitation conditions and to carry out diagnostics of the gas ionization state. The main steps of observations, data calibration, and reduction are illustrated by examples of different emission-line objects: galactic HII regions, planetary nebulae, active galaxies with extended filaments, starburst galaxies, and Perseus galaxy cluster.
We have used the Taurus Tunable Filter to search for Lyman alpha emitters in the fields of three high redshift quasar fields: two at z~2.2 (MRC B1256-243 and MRC B2158-206) and one at z~4.5 (BR B0019-1522). Our observations had a field of view of aro und 35 square arcminutes, and reached AB magnitudes of magnitudes of ~21 (MRC B1256-243), ~22 (MRC B2158-206), and ~22.6 (BR B0019-1522), dependent on wavelength. We have identified candidate emission line galaxies in all three of the fields, with the higher redshift field being by far the richest. By combining our observations with simulations of the instrumental response, we estimate the total density of emission line galaxies in each field. Seventeen candidate emission line galaxies were found in within 1.5 Mpc of BR0019-1522, a number density of 4.9 +/- 1.2 x 10^-3 Mpc^-3, suggesting a significant galaxy overdensity at z~4.5.
We describe the new spectroscopic data reduction pipeline for the multi-object MMT/Magellan Infrared Spectrograph. The pipeline is implemented in idl as a stand-alone package and is publicly available in both stable and developme
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا