ترغب بنشر مسار تعليمي؟ اضغط هنا

MMT & Magellan Infrared Spectrograph

275   0   0.0 ( 0 )
 نشر من قبل Brian McLeod
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The MMT and Magellan infrared spectrograph (MMIRS) is a cryogenic multiple slit spectrograph operating in the wavelength range 0.9-2.4 micron. MMIRS refractive optics offer a 6.9 by 6.9 arcmin field of view for imaging with a spatial resolution of 0.2 arcsec per pixel on a HAWAII-2 array. For spectroscopy, MMIRS can be used with long slits up to 6.9 arcmin long, or with custom slit masks having slitlets distributed over a 4 by 6.9 arcmin area. A range of dispersers offer spectral resolutions of 800 to 3000. MMIRS is designed to be used at the f/5 foci of the MMT or Magellan Clay 6.5m telescopes. MMIRS was commissioned in 2009 at the MMT and has been in routine operation at the Magellan Clay Telescope since 2010. MMIRS is being used for a wide range of scientific investigations from exoplanet atmospheres to Ly-alpha emitters.

قيم البحث

اقرأ أيضاً

We describe the new spectroscopic data reduction pipeline for the multi-object MMT/Magellan Infrared Spectrograph. The pipeline is implemented in idl as a stand-alone package and is publicly available in both stable and developme
Binospec is a high throughput, 370 to 1000 nm, imaging spectrograph that addresses two adjacent 8 by 15 fields of view. Binospec was commissioned in late 2017 at the f/5 focus of the 6.5m MMT and is now available to all MMT observers. Aperture masks cut from stainless steel with a laser cutter are used to define the entrance apertures that range from 15 long slits to hundreds of 2 slitlets. System throughputs, including the MMTs mirrors and the f/5 wide-field corrector peak at ~30%. Three reflection gratings, duplicated for the two beams, provide resolutions ($lambda$/$Delta lambda$) between 1300 and $>$5000 with a 1 wide slit. Two through-the-mask guiders are used for target acquisition, mask alignment, guiding, and precision offsets. A full-time Shack-Hartmann wave front sensor allows continuous adjustment of primary mirror support forces, telescope collimation and focus. Active flexure control maintains spectrograph alignment and focus under varying gravity and thermal conditions.
We introduce a data reduction package written in Interactive Data Language (IDL) for the Magellan Echellete Spectrograph (MAGE). MAGE is a medium-resolution (R ~4100), cross-dispersed, optical spectrograph, with coverage from ~3000-10000 Angstroms. T he MAGE Spectral Extractor (MASE) incorporates the entire image reduction and calibration process, including bias subtraction, flat fielding, wavelength calibration, sky subtraction, object extraction and flux calibration of point sources. We include examples of the user interface and reduced spectra. We show that the wavelength calibration is sufficient to achieve ~5 km/s RMS accuracy and relative flux calibrations better than 10%. A light-weight version of the full reduction pipeline has been included for real-time source extraction and signal-to-noise estimation at the telescope.
We are building an image slicer integral field unit (IFU) to go on the IMACS wide-field imaging spectrograph on the Magellan Baade Telescope at Las Campanas Observatory, the Reformatting Optically-Sensitive IMACS Enhancement IFU, or ROSIE IFU. The 50 .4 x 53.5 field of view will be pre-sliced into four 12.6 x 53.5 subfields, and then each subfield will be divided into 21 0.6 x 53.5 slices. The four main image slicers will produce four pseudo-slits spaced six arcminutes apart across the IMACS f/2 camera field of view, providing a wavelength coverage of 1800 Angstroms at a spectral resolution of 2000. Optics are in-hand, the first image slicer is being aluminized, mounts are being designed and fabricated, and software is being written. This IFU will enable the efficient mapping of extended objects such as nebulae, galaxies, or outflows, making it a powerful addition to IMACS.
The Gemini Infrared Multi-Object Spectrograph (GIRMOS) is a powerful new instrument being built to facility-class standards for the Gemini telescope. It takes advantage of the latest developments in adaptive optics and integral field spectrographs. G IRMOS will carry out simultaneous high-angular-resolution, spatially-resolved infrared ($1-2.4$ $mu$m) spectroscopy of four objects within a two-arcminute field-of-regard by taking advantage of multi-object adaptive optics. This capability does not currently exist anywhere in the world and therefore offers significant scientific gains over a very broad range of topics in astronomical research. For example, current programs for high redshift galaxies are pushing the limits of what is possible with infrared spectroscopy at $8-10$-meter class facilities by requiring up to several nights of observing time per target. Therefore, the observation of multiple objects simultaneously with adaptive optics is absolutely necessary to make effective use of telescope time and obtain statistically significant samples for high redshift science. With an expected commissioning date of 2023, GIRMOSs capabilities will also make it a key followup instrument for the James Webb Space Telescope when it is launched in 2021, as well as a true scientific and technical pathfinder for future Thirty Meter Telescope (TMT) multi-object spectroscopic instrumentation. In this paper, we will present an overview of this instruments capabilities and overall architecture. We also highlight how this instrument lays the ground work for a future TMT early-light instrument.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا