ترغب بنشر مسار تعليمي؟ اضغط هنا

The Brazilian Tunable Filter Imager for the SOAR telescope

149   0   0.0 ( 0 )
 نشر من قبل Fabricio Ferrari
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a new Tunable Filter Instrument for the SOAR telescope. The Brazilian Tunable Filter Imager (BTFI) is a versatile, new technology, tunable optical imager to be used in seeing-limited mode and at higher spatial fidelity using the SAM Ground-Layer Adaptive Optics facility at the SOAR telescope. The instrument opens important new science capabilities for the SOAR community, from studies of the centers of nearby galaxies and the insterstellar medium to statistical cosmological investigations. The BTFI takes advantage of three new technologies. The imaging Bragg Tunable Filter concept utilizes Volume Phase Holographic Gratings in a double-pass configuration, as a tunable filter, while a new Fabry-Perot (FP) concept involves technologies which allow a single FP etalon to act over a large range of interference orders and spectral resolutions. Both technologies will be in the same instrument. Spectral resolutions spanning the range between 25 and 30,000 can be achieved through the use of iBTF at low resolution and scanning FPs beyond R ~2,000. The third new technologies in BTFI is the use of EMCCDs for rapid and cyclically wavelength scanning thus mitigating the damaging effect of atmospheric variability through data acquisition. An additional important feature of the instrument is that it has two optical channels which allow for the simultaneous recording of the narrow-band, filtered image with the remaining (complementary) broad-band light. This avoids the uncertainties inherent in tunable filter imaging using a single detector. The system was designed to supply tunable filter imaging with a field-of-view of 3 arcmin on a side, sampled at 0.12 for direct Nasmyth seeing-limited area spectroscopy and for SAMs visitor instrument port for GLAO-fed area spectroscopy. The instrument has seen first light, as a SOAR visitor instrument. It is now in comissioning phase.



قيم البحث

اقرأ أيضاً

We described the design and operation principles of a new tunable-filter photometer developed for the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the 2.5-m telescope of the Sternberg Astronomical Inst itute of the Moscow State University. The instrument is mounted on the scanning Fabry-Perot interferometer operating in the tunable-filter mode in the spectral range of 460-800 nm with a typical spectral resolution of about 1.3 nm. It allows one to create images of galactic and extragalactic nebulae in the emission lines having different excitation conditions and to carry out diagnostics of the gas ionization state. The main steps of observations, data calibration, and reduction are illustrated by examples of different emission-line objects: galactic HII regions, planetary nebulae, active galaxies with extended filaments, starburst galaxies, and Perseus galaxy cluster.
Vacuum quantum fluctuations impose a fundamental limit on the sensitivity of gravitational-wave interferometers, which rank among the most sensitive precision measurement devices ever built. The injection of conventional squeezed vacuum reduces quant um noise in one quadrature at the expense of increasing noise in the other. While this approach improved the sensitivity of the Advanced LIGO and Advanced Virgo interferometers during their third observing run (O3), future improvements in arm power and squeezing levels will bring radiation pressure noise to the forefront. Installation of a filter cavity for frequency-dependent squeezing provides broadband reduction of quantum noise through the mitigation of this radiation pressure noise, and it is the baseline approach planned for all of the future gravitational-wave detectors currently conceived. The design and operation of a filter cavity requires careful consideration of interferometer optomechanics as well as squeezing degradation processes. In this paper, we perform an in-depth analysis to determine the optimal operating point of a filter cavity. We use our model alongside numerical tools to study the implications for filter cavities to be installed in the upcoming A+ upgrade of the Advanced LIGO detectors.
The Cherenkov Telescope Array (CTA) is the the next generation facility of imaging atmospheric Cherenkov telescopes; two sites will cover both hemispheres. CTA will reach unprecedented sensitivity, energy and angular resolution in very-high-energy ga mma-ray astronomy. Each CTA array will include four Large Size Telescopes (LSTs), designed to cover the low-energy range of the CTA sensitivity ($sim$20 GeV to 200 GeV). In the baseline LST design, the focal-plane camera will be instrumented with 265 photodetector clusters; each will include seven photomultiplier tubes (PMTs), with an entrance window of 1.5 inches in diameter. The PMT design is based on mature and reliable technology. Recently, silicon photomultipliers (SiPMs) are emerging as a competitor. Currently, SiPMs have advantages (e.g. lower operating voltage and tolerance to high illumination levels) and disadvantages (e.g. higher capacitance and cross talk rates), but this technology is still young and rapidly evolving. SiPM technology has a strong potential to become superior to the PMT one in terms of photon detection efficiency and price per square mm of detector area. While the advantage of SiPMs has been proven for high-density, small size cameras, it is yet to be demonstrated for large area cameras such as the one of the LST. We are working to develop a SiPM-based module for the LST camera, in view of a possible camera upgrade. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall LST camera design.
112 - M.G.Betti , M.Biasotti , A.Bosca 2018
We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of ExB is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouvilles theorem for Hamiltonian systems.
The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of tel escopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا