ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersaturated dispersions of rod-like viruses with added attraction

142   0   0.0 ( 0 )
 نشر من قبل Pavlik Lettinga dr
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The kinetics of isotropic-nematic (I-N) and nematic-isotropic (N-I) phase transitions in dispersions of rod-like {it fd}-viruses are studied. Concentration quenches were applied using pressure jumps in combination with polarization microscopy, birefringence and turbidity measurements. The full biphasic region could be accessed, resulting in the construction of a first experimental analogue of the bifurcation diagram. The N-I spinodal points for dispersions of rods with varying concentrations of depletion agents (dextran) were obtained from orientation quenches, using cessation of shear flow in combination with small angle light scattering. We found that the location of the N-I spinodal point is independent of the attraction, which was confirmed by theoretical calculations. Surprisingly, the experiments showed that also the absolute induction time, the critical nucleus and the growth rate are insensitive of the attraction, when the concentration is scaled to the distance to the phase boundaries.



قيم البحث

اقرأ أيضاً

The intrinsic viscosity of a dilute dispersion of rigid rods is studied using a recently developed direct numerical simulation (DNS) method for particle dispersions. A reentrant transition from shear-thinning to the 2nd Newtonian regime is successful ly reproduced in the present DNS results around a Peclet number ${rm Pe}=150$, which is in good agreement with our theoretical prediction of ${rm Pe}=143$, at which the dynamical crossover from Brownian to non-Brownian behavior takes place in the rotational motion of the rotating rod. The viscosity undershoot is observed in our simulations before reaching the 2nd Newtonian regime. The physical mechanisms behind these behaviors are analyzed in detail.
We construct colloidal ``sticky rods from the semi-flexible filamentous fd virus and temperature-sensitive polymers poly(N-isopropylacrylamide) (PNIPAM). The phase diagram of fd-PNIPAM system becomes independent of ionic strength at high salt concent ration and low temperature, i.e. the rods are sterically stabilized by the polymer. However, the network of sticky rods undergoes a sol-gel transition as the temperature is raised. The viscoelastic moduli of fd and fd-PNIPAM suspensions are compared as a function of temperature, and the effect of ionic strength on the gelling behavior of fd-PNIPAM solution is measured. For all fluidlike and solidlike samples, the frequency-dependant linear viscoelastic moduli can be scaled onto universal master curves.
To study the elastic properties of rod-like DNA nanostructures, we perform long simulations of these structure using the oxDNA coarse-grained model. By analysing the fluctuations in these trajectories we obtain estimates of the bend and twist persist ence lengths, and the underlying bend and twist elastic moduli and couplings between them. Only on length scales beyond those associated with the spacings between the interhelix crossovers do the bending fluctuations behave like those of a worm-like chain. The obtained bending persistence lengths are much larger than that for double-stranded DNA and increase non-linearly with the number of helices, whereas the twist moduli increase approximately linearly. To within the numerical error in our data, the twist-bend coupling constants are of order zero. That the bending persistence lengths we obtain are generally somewhat higher than in experiment probably reflects both that the simulated origami have no assembly defects and that the oxDNA extensional modulus for double-stranded DNA is too large.
In their search for metabolic resources microbes swim through viscous environments that present physical anisotropies, including steric obstacles across a wide range of sizes. Hydrodynamic forces are known to significantly alter swimmer trajectories near flat and low-curvature surfaces. In this work, we imaged hundreds-of-thousands of high-curvature scattering interactions between swimming bacteria and micro-fabricated pillars with radii from ~1 to ~10 cell lengths. As a function of impact parameter, cell-pillar interactions produced distinct chiral distributions for scattering angle -- including unexpected counter-rotator trajectories -- well-described by a sterics-only model. Our data and model suggest that alteration of swimmer trajectories is subject to distinct mechanisms when interacting with objects of different size; primarily steric for objects below ~10 cell lengths and requiring incorporation of hydrodynamics at larger scales. These alterations in trajectory impact swim dynamics and may affect microbial populations in ways that depend on the shape and placement of obstacles within an environment.
We study the attractive interactions between rod-like charged polymers in solution that appear in the presence of multi-valence counterions. The counterions condensed to the rods exhibit both a strong transversal polarization and a longitudinal cryst alline arrangement. At short distances between the rods, the fraction of condensed counterions increases, and the majority of these occupy the region between the rods, where they minimize their repulsive interactions by arranging themselves into packing structures. The attractive interaction is strongest for multivalent counterions. Our model takes into account the hard-core volume of the condensed counterions and their angular distribution around the rods. The hard core constraint strongly suppresses longitudinal charge fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا