ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing the elastic mechanical properties of rod-like DNA nanostructures

74   0   0.0 ( 0 )
 نشر من قبل Jonathan Doye
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To study the elastic properties of rod-like DNA nanostructures, we perform long simulations of these structure using the oxDNA coarse-grained model. By analysing the fluctuations in these trajectories we obtain estimates of the bend and twist persistence lengths, and the underlying bend and twist elastic moduli and couplings between them. Only on length scales beyond those associated with the spacings between the interhelix crossovers do the bending fluctuations behave like those of a worm-like chain. The obtained bending persistence lengths are much larger than that for double-stranded DNA and increase non-linearly with the number of helices, whereas the twist moduli increase approximately linearly. To within the numerical error in our data, the twist-bend coupling constants are of order zero. That the bending persistence lengths we obtain are generally somewhat higher than in experiment probably reflects both that the simulated origami have no assembly defects and that the oxDNA extensional modulus for double-stranded DNA is too large.



قيم البحث

اقرأ أيضاً

The flexibility and stiffness of small DNA play a fundamental role ranging from several biophysical processes to nano-technological applications. Here, we estimate the mechanical properties of short double-stranded DNA (dsDNA) having length ranging f rom 12 base-pairs (bps) to 56 bps, paranemic crossover (PX) DNA, and hexagonal DNA nanotubes (DNTs) using two widely used coarse-grain models $-$ Martini and oxDNA. To calculate the persistence length ($L_p$) and the stretch modulus ($gamma$) of the dsDNA, we incorporate the worm-like chain and elastic rod model, while for DNT, we implement our previously developed theoretical framework. We compare and contrast all the results with previously reported all-atom molecular dynamics (MD) simulation and experimental results. The mechanical properties of dsDNA ($L_p$ $sim$ 50nm, $gamma sim$ 800-1500 pN), PX DNA ($gamma sim$ 1600-2000 pN) and DNTs ($L_p sim 1-10 mu$m, $gamma sim$ 6000-8000 pN) estimated using Martini soft elastic network and oxDNA are in very good agreement with the all-atom MD and experimental values, while the stiff elastic network Martini reproduces order of magnitude higher values of $L_p$ and $gamma$. The high flexibility of small dsDNA is also depicted in our calculations. However, Martini models proved inadequate to capture the salt concentration effects on the mechanical properties with increasing salt molarity. OxDNA captures the salt concentration effect on small dsDNA mechanics. But it is found to be ineffective to reproduce the salt-dependent mechanical properties of DNTs. Also, unlike Martini, the time evolved PX DNA and DNT structures from the oxDNA models are comparable to the all-atom MD simulated structures. Our findings provide a route to study the mechanical properties of DNA nanostructures with increased time and length scales and has a remarkable implication in the context of DNA nanotechnology.
The kinetics of isotropic-nematic (I-N) and nematic-isotropic (N-I) phase transitions in dispersions of rod-like {it fd}-viruses are studied. Concentration quenches were applied using pressure jumps in combination with polarization microscopy, birefr ingence and turbidity measurements. The full biphasic region could be accessed, resulting in the construction of a first experimental analogue of the bifurcation diagram. The N-I spinodal points for dispersions of rods with varying concentrations of depletion agents (dextran) were obtained from orientation quenches, using cessation of shear flow in combination with small angle light scattering. We found that the location of the N-I spinodal point is independent of the attraction, which was confirmed by theoretical calculations. Surprisingly, the experiments showed that also the absolute induction time, the critical nucleus and the growth rate are insensitive of the attraction, when the concentration is scaled to the distance to the phase boundaries.
We construct colloidal ``sticky rods from the semi-flexible filamentous fd virus and temperature-sensitive polymers poly(N-isopropylacrylamide) (PNIPAM). The phase diagram of fd-PNIPAM system becomes independent of ionic strength at high salt concent ration and low temperature, i.e. the rods are sterically stabilized by the polymer. However, the network of sticky rods undergoes a sol-gel transition as the temperature is raised. The viscoelastic moduli of fd and fd-PNIPAM suspensions are compared as a function of temperature, and the effect of ionic strength on the gelling behavior of fd-PNIPAM solution is measured. For all fluidlike and solidlike samples, the frequency-dependant linear viscoelastic moduli can be scaled onto universal master curves.
In their search for metabolic resources microbes swim through viscous environments that present physical anisotropies, including steric obstacles across a wide range of sizes. Hydrodynamic forces are known to significantly alter swimmer trajectories near flat and low-curvature surfaces. In this work, we imaged hundreds-of-thousands of high-curvature scattering interactions between swimming bacteria and micro-fabricated pillars with radii from ~1 to ~10 cell lengths. As a function of impact parameter, cell-pillar interactions produced distinct chiral distributions for scattering angle -- including unexpected counter-rotator trajectories -- well-described by a sterics-only model. Our data and model suggest that alteration of swimmer trajectories is subject to distinct mechanisms when interacting with objects of different size; primarily steric for objects below ~10 cell lengths and requiring incorporation of hydrodynamics at larger scales. These alterations in trajectory impact swim dynamics and may affect microbial populations in ways that depend on the shape and placement of obstacles within an environment.
Most of the anticancer drugs bind to double-stranded DNA (dsDNA) by intercalative-binding mode. Although experimental studies have become available recently, a molecular-level understanding of the interactions between the drug and dsDNA that lead to the stability of the intercalated drug is lacking. Of particular interest are the modifications of the mechanical properties of dsDNA observed in experiments. The latter could affect many biological functions, such as DNA transcription and replication. Here we probe, via all-atom molecular dynamics (MD) simulations, change in the mechanical properties of intercalated drug-DNA complexes for two intercalators, daunomycin and ethidium. We find that, upon drug intercalation, stretch modulus of DNA increases significantly, whereas its persistence length and bending modulus decrease. Steered MD simulations reveal that it requires higher forces to stretch the intercalated dsDNA complexes than the normal dsDNA. Adopting various pulling protocols to study force-induced DNA melting, we find that the dissociation of dsDNA becomes difficult in the presence of intercalators. The results obtained here provide a plausible mechanism of function of the anticancer drugs, i.e., via altering the mechanical properties of DNA. We also discuss long-time consequences of using these drugs, which require further in vivo investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا