ترغب بنشر مسار تعليمي؟ اضغط هنا

Homodyne locking of a squeezer

85   0   0.0 ( 0 )
 نشر من قبل Elanor Huntington
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the successful implementation of a new approach to locking the frequencies of an OPO-based squeezed-vacuum source and its driving laser. The technique allows the simultaneous measurement of the phase-shifts induced by a cavity, which may be used for the purposes of frequency-locking, as well as the simultaneous measurement of the sub-quantum-noise-limited (sub-QNL) phase quadrature output of the OPO. The homodyne locking technique is cheap, easy to implement and has the distinct advantage that subsequent homodyne measurements are automatically phase-locked. The homodyne locking technique is also unique in that it is a sub-QNL frequency discriminator.

قيم البحث

اقرأ أيضاً

A non trace-preserving map describing a probabilistic but heralded noiseless linear amplifier has recently been proposed and experimentally demonstrated. Here, we exhibit another remarkable feature of this peculiar transformation, namely its ability to serve as a universal single-mode squeezer regardless of the quadrature that is initially squeezed. Hence, it acts as an heralded phase-insensitive optical squeezer, conserving the signal-to-noise ratio just as a phase-sensitive optical amplifier but for all quadratures at the same time, which may offer new perspectives in quantum optical communications. Although this ability to squeeze all quadratures seemingly opens a way to instantaneous signaling by circumventing the quantum no-cloning theorem, we explain the subtle mechanism by which the probability for such a causality violation vanishes, even on an heralded basis.
We study the average coincidence-count signal at the output of a two-mode squeezing device with $|Nrangleotimes|alpharangle$ as the two input modes. We show that the input photon-number can be resolved from the average coincidence counts. In particul ar, we show jumps in the average coincidence-count signal as a function of input photon-number $N$. Therefore, we propose that such a device may be deployed as photon-number-resolving detector at room temperature with high efficiency.
We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed non-degenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two ph otons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.
Controlling the quadrature measured by a homodyne detector is a universal task in continuous-variable quantum optics. However, deriving an error signal that is linear across theentire range of quadrature angles remains an open experimental problem. H ere we propose a scheme to produce such an error signal through the use of a universally tunable modulator.
96 - B. Kuhn , W. Vogel 2018
We derive the full statistics of the product events in homodyne correlation measurements, involving a single mode signal, a local oscillator, a linear optical network, and two linear photodetectors. This is performed for the regime of high intensitie s impinging on the detectors. Our description incorporates earlier proposed homodyne correlation measurement schemes, such as the homodyne cross-correlation and homodyne intensity-correlation measurements. This analysis extends the amount of information retrieved from such types of measurements, since previously attention was paid only to the expectation value of the correlation statistics. As an example, we consider the correlation statistics of coherent, Gaussian, and Fock states. Moreover, nonclassical light is certified on the basis of the variance of the measurement outcome.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا