ترغب بنشر مسار تعليمي؟ اضغط هنا

A Novel Modulation Scheme for Homodyne Detection Control

149   0   0.0 ( 0 )
 نشر من قبل Danial Shadmany
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlling the quadrature measured by a homodyne detector is a universal task in continuous-variable quantum optics. However, deriving an error signal that is linear across theentire range of quadrature angles remains an open experimental problem. Here we propose a scheme to produce such an error signal through the use of a universally tunable modulator.



قيم البحث

اقرأ أيضاً

A novel bulk optics scheme for quantum walks is presented. It consists of a one-dimensional lattice built on two concatenated displaced Sagnac interferometers that make it possible to reproduce all the possible trajectories of an optical quantum walk . Because of the closed loop configuration, the interferometric structure is intrinsically stable in phase. Moreover, the lattice structure is highly configurable, as any phase component perceived by the walker is accessible, and finally, all output modes can be measured at any step of the quantum walk evolution. We report here on the experimental implementation of ordered and disordered quantum walks.
Standard quantum state reconstruction techniques indicate that a detection efficiency of $0.5$ is an absolute threshold below which quantum interferences cannot be measured. However, alternative statistical techniques suggest that this threshold can be overcome at the price of increasing the statistics used for the reconstruction. In the following we present numerical experiments proving that quantum interferences can be measured even with a detection efficiency smaller than $0.5$. At the same time we provide a guideline for handling the tomographic reconstruction of quantum states based on homodyne data collected by low efficiency detectors.
237 - Jaewan Kim , Juhui Lee , Se-Wan Ji 2010
Defining a computational basis of pseudo-number states, we interpret a coherent state of large amplitude, $|alpha|ggfrac{d}{2pi}$, as a qudit --- a $d$-level quantum system --- in a state that is an even superposition of $d$ pseudo-number states. A p air of such coherent-state qudits can be prepared in maximally entangled state by generalized Controlled-$Z$ operation that is based on cross-Kerr nonlinearity, which can be weak for large $d$. Hence, a coherent-state optical qudit cluster state can be prepared by repetitive application of the generalized Controlled-$Z$ operation to a set of coherent states. We thus propose an optical qudit teleportation as a simple demonstration of cluster state quantum computation.
We propose a feasible optical setup allowing for a loophole-free Bell test with efficient homodyne detection. A non-gaussian entangled state is generated from a two-mode squeezed vacuum by subtracting a single photon from each mode, using beamsplitte rs and standard low-efficiency single-photon detectors. A Bell violation exceeding 1% is achievable with 6-dB squeezed light and an homodyne efficiency around 95%. A detailed feasibility analysis, based upon the recent generation of single-mode non-gaussian states, confirms that this method opens a promising avenue towards a complete experimental Bell test.
Travelling modes of single-photon-added coherent states (SPACS) are characterized via optical homodyne tomography. Given a set of experimentally measured quadrature distributions, we estimate parameters of the state and also extract information about the detector efficiency. The method used is a minimal distance estimation between theoretical and experimental quantities, which additionally allows to evaluate the precision of estimated parameters. Given experimental data, we also estimate the lower and upper bounds on fidelity. The results are believed to encourage preciser engineering and detection of SPACS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا