ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum homodyne tomography of a two-photon Fock state

110   0   0.0 ( 0 )
 نشر من قبل Alexei Ourjoumtsev
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed non-degenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two photons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.

قيم البحث

اقرأ أيضاً

Heralded single photons are prepared at a rate of ~100 kHz via conditional measurements on polarization-nondegenerate biphotons produced in a periodically poled KTP crystal. The single-photon Fock state is characterized using high frequency pulsed op tical homodyne tomography with a fidelity of (57.6 +- 0.1)%. The state preparation and detection rates allowed us to perform on-the-fly alignment of the apparatus based on real-time analysis of the quadrature measurement statistics.
Path-entangled N-photon states can be obtained through the coalescence of indistinguishable photons inside linear networks. They are key resources for quantum enhanced metrology, quantum imaging, as well as quantum computation based on quantum walks. However, the quantum tomography of path-entangled indistinguishable photons is still in its infancy as it requires multiple phase estimations increasing rapidly with N. Here, we propose and implement a method to measure the quantum tomography of path-entangled two-photon states. A two-photon state is generated through the Hong-Ou-Mandel interference of highly indistinguishable single photons emitted by a semiconductor quantum dot-cavity device. To access both the populations and the coherences of the path-encoded density matrix, we introduce an ancilla spatial mode and perform photon correlations as a function of a single phase in a split Mach-Zehnder interferometer. We discuss the accuracy of standard quantum tomography techniques and show that an overcomplete data set can reveal spatial coherences that could be otherwise hidden due to limited or noisy statistics. Finally, we extend our analysis to extract the truly indistinguishable part of the density matrix, which allows us to identify the main origin for the imperfect fidelity to the maximally entangled state.
The Wigner quasiprobability distribution of a narrowband single-photon state was reconstructed by quantum state tomography using photon-number-resolving measurements with transition-edge sensors (TES) at system efficiency 58(2)%. This method makes no assumptions on the nature of the measured state, save for the limitation on photon flux imposed by the TES. Negativity of the Wigner function was observed in the raw data without any inference or correction for decoherence.
67 - M. Brune , J. Bernu , C. Guerlin 2008
The relaxation of a quantum field stored in a high-$Q$ superconducting cavity is monitored by non-resonant Rydberg atoms. The field, subjected to repetitive quantum non-demolition (QND) photon counting, undergoes jumps between photon number states. W e select ensembles of field realizations evolving from a given Fock state and reconstruct the subsequent evolution of their photon number distributions. We realize in this way a tomography of the photon number relaxation process yielding all the jump rates between Fock states. The damping rates of the $n$ photon states ($0leq n leq 7$) are found to increase linearly with $n$. The results are in excellent agreement with theory including a small thermal contribution.
Complete characterization of states and processes that occur within quantum devices is crucial for understanding and testing their potential to outperform classical technologies for communications and computing. However, solving this task with curren t state-of-the-art techniques becomes unwieldy for large and complex quantum systems. Here we realize and experimentally demonstrate a method for complete characterization of a quantum harmonic oscillator based on an artificial neural network known as the restricted Boltzmann machine. We apply the method to optical homodyne tomography and show it to allow full estimation of quantum states based on a smaller amount of experimental data compared to state-of-the-art methods. We link this advantage to reduced overfitting. Although our experiment is in the optical domain, our method provides a way of exploring quantum resources in a broad class of large-scale physical systems, such as superconducting circuits, atomic and molecular ensembles, and optomechanical systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا