ترغب بنشر مسار تعليمي؟ اضغط هنا

Lyman-alpha Emission From Cosmic Structure I: Fluorescence

163   0   0.0 ( 0 )
 نشر من قبل Juna A. Kollmeier
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Juna A. Kollmeier




اسأل ChatGPT حول البحث

We present predictions for the fluorescent Lyman-alpha emission signature arising from photoionized, optically thick structures in Smoothed Particle Hydrodynamic (SPH) cosmological simulations of a Lambda-CDM universe using a Monte Carlo Lyman-alpha radiative transfer code. We calculate the expected Lyman-alpha image and 2-dimensional spectra for gas exposed to a uniform ultraviolet ionizing background as well as gas exposed additionally to the photoionizing radiation from a local quasar, after correcting for the self-shielding of hydrogen. As a test of our numerical methods and for application to current observations, we examine simplified analytic structures that are uniformly or anisotropically illuminated. We compare these results with recent observations. We discuss future observing campaigns on large telescopes and realistic strategies for detecting fluorescence owing to the ambient metagalactic ionization and in regions close to bright quasars. While it will take hundreds of hours on the current generation of telescopes to detect fluorescence caused by the ultraviolet background (UVB) alone, our calculations suggest that of order ten sources of quasar-induced fluorescent Lyman-alpha emission should be detectable after a 10 hour exposure in a 10 arcmin^2 field around a bright quasar. These observations will help probe the physical conditions in the densest regions of the intergalactic medium as well as the temporal light curves and isotropy of quasar radiation.



قيم البحث

اقرأ أيضاً

As a result of resonant scatterings off hydrogen atoms, Lyman-alpha (Lya) emission from star-forming galaxies provides a probe of the (hardly isotropic) neutral gas environment around them. We study the effect of the environmental anisotropy on the o bserved Lya emission by performing radiative transfer calculations for models of neutral hydrogen clouds with prescriptions of spatial and kinematic anisotropies. The environmental anisotropy leads to corresponding anisotropy in the Lya flux and spectral properties and induces correlations among them. The Lya flux (or observed luminosity) depends on the viewing angle and shows an approximate correlation with the initial Lya optical depth in the viewing direction relative to those in all other directions. The distribution of Lya flux from a set of randomly oriented clouds is skewed to high values, providing a natural contribution to the Lya equivalent width (EW) distribution seen in observation. A narrower EW distribution is found at a larger peak offset of the Lya line, similar to the trend suggested in observation. The peak offset appears to correlate with the line shape (full width at half maximum and asymmetry), pointing to a possibility of using Lya line features alone to determine the systemic redshifts of galaxies. The study suggests that anisotropies in the spatial and kinematic distributions of neutral hydrogen can be an important ingredient in shaping the observed properties of Lya emission from star-forming galaxies. We discuss the implications of using Lya emission to probe the circumgalactic and intergalactic environments of galaxies.
230 - J. Rosdahl , J. Blaizot 2011
{Abridged} We investigate the observability of cold accretion streams at redshift 3 via Lyman-alpha (Lya) emission and the feasibility of cold accretion as the main driver of Lya blobs (LABs). We run cosmological zoom simulations focusing on 3 halos spanning two orders of magnitude in mass, roughly from 10^11 to 10^13 solar masses. We use a version of the Ramses code that includes radiative transfer of UV photons, and we employ a refinement strategy that allows us to resolve accretion streams in their natural environment to an unprecedented level. For the first time, we self-consistently model self-shielding in the cold streams from the cosmological UV background, which enables us to predict their temperatures, ionization states and Lya luminosities with improved accuracy. We find the efficiency of gravitational heating in cold streams in a ~10^11 solar mass halo is around 10-20% throughout most of the halo but reaching much higher values close to the center. As a result most of the Lya luminosity comes from gas which is concentrated at the central 20% of the halo radius, leading to Lya emission which is not extended. In more massive halos, of >10^12 solar masses, cold accretion is complex and disrupted, and gravitational heating does not happen as a steady process. Ignoring the factors of Lya scattering, local UV enhancement, and SNe feedback, cold accretion alone in these massive halos can produce LABs that largely agree with observations in terms of morphology, extent, and luminosity. Our simulations slightly and systematically over-predict LAB abundances, perhaps hinting that the interplay of these ignored factors may have a negative net effect on extent and luminosity. We predict that a factor of a few increase in sensitivity from current observational limits should unambiguously reveal continuum-free accretion streams around massive galaxies at z=3.
Cosmological simulations suggest that most of the matter in the Universe is distributed along filaments connecting galaxies. Illuminated by the cosmic UV background (UVB), these structures are expected to glow in fluorescent Lyman alpha emission with a Surface Brightness (SB) that is well below current observational limits for individual detections. Here, we perform a stacking analysis of the deepest MUSE/VLT data using three-dimensional regions (subcubes) with orientations determined by the position of neighbouring Lyman alpha galaxies (LAEs) at 3<z<4. Our method should increase the probability of detecting filamentary Lyman alpha emission, provided that these structures are Lyman Limit Systems (LLSs). By stacking 390 oriented subcubes we reach a 2 sigma sensitivity level of SB ~ 0.44e-20 erg/s/cm^2/arcsec^2 in an aperture of 1 arcsec^2 x 6.25 Angstrom, which is three times below the expected fluorescent Lyman alpha signal from the Haardt-Madau 2012 (HM12) UVB at z~3.5. No detectable emission is found on intergalactic scales, implying that at least two thirds of our subcubes do not contain oriented LLSs for a HM12 UVB. On the other hand, significant emission is detected in the circum-galactic medium (CGM) of galaxies in the direction of the neighbours. The signal is stronger for galaxies with a larger number of neighbours and appears to be independent of any other galaxy properties such as luminosity, redshift and neighbour distance. We estimate that preferentially oriented satellite galaxies cannot contribute significantly to this signal, suggesting instead that gas densities in the CGM are typically larger in the direction of neighbouring galaxies on cosmological scales.
We present results from a new Keck spectroscopic survey of UV-faint LBGs in the redshift range 3<z<7. Combined with earlier Keck and published ESO VLT data, our sample contains more than 600 dropouts, offering new insight into the nature of sub-L* so urces typical of those likely to dominate the cosmic reionisation process. Here we use this sample to characterise the fraction of strong Lya emitters within the continuum-selected dropouts. By quantifying how the Lya fraction varies with redshift, we seek to constrain changes in Lya transmission associated with reionisation. In order to distinguish the effects of reionisation from other factors which affect the Lya fraction (e.g. dust, ISM kinematics), we study the luminosity and redshift-dependence of the Lya fraction over 3<z<6, when the IGM is known to be ionised. These results reveal that low luminosity galaxies show strong Lya emission much more frequently than luminous systems, and that at fixed luminosity, the prevalence of strong Lya emission increases moderately with redshift over 3 < z < 6. Based on the correlation between blue UV slopes and strong Lya emitting galaxies in our dataset, we argue that the Lya fraction trends are governed by redshift and luminosity-dependent variations in the dust obscuration, with likely additional contributions from trends in the kinematics and covering fraction of neutral hydrogen. We find a tentative decrease in the Lya fraction at z~7 based on the limited IR spectra for candidate z~7 lensed LBGs, a result which, if confirmed with future surveys, would suggest an increase in the neutral fraction by this epoch. Given the supply of z and Y-drops now available from Hubble WFC3/IR surveys, we show it will soon be possible to significantly improve estimates of the Lya fraction using optical and near-IR spectrographs, thereby extending the study conducted in this paper to 7<z<8.
We present Spitzer observations of Lya Blobs (LAB) at z=2.38-3.09. The mid-infrared ratios (4.5/8um and 8/24um) indicate that ~60% of LAB infrared counterparts are cool, consistent with their infrared output being dominated by star formation and not active galactic nuclei (AGN). The rest have a substantial hot dust component that one would expect from an AGN or an extreme starburst. Comparing the mid-infrared to submillimeter fluxes (~850um or rest frame far infrared) also indicates a large percentage (~2/3) of the LAB counterparts have total bolometric energy output dominated by star formation, although the number of sources with sub-mm detections or meaningful upper limits remains small (~10). We obtained Infrared Spectrograph (IRS) spectra of 6 infrared-bright sources associated with LABs. Four of these sources have measurable polycyclic aromatic hydrocarbon (PAH) emission features, indicative of significant star formation, while the remaining two show a featureless continuum, indicative of infrared energy output completely dominated by an AGN. Two of the counterparts with PAHs are mixed sources, with PAH line-to-continuum ratios and PAH equivalent widths indicative of large energy contributions from both star formation and AGN. Most of the LAB infrared counterparts have large stellar masses, around 10^11 Mo. There is a weak trend of mass upper limit with the Lya luminosity of the host blob, particularly after the most likely AGN contaminants are removed. The range in likely energy sources for the LABs found in this and previous studies suggests that there is no single source of power that is producing all the known LABs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا