ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Lyman-alpha emission from cold accretion streams

147   0   0.0 ( 0 )
 نشر من قبل Joakim Rosdahl
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

{Abridged} We investigate the observability of cold accretion streams at redshift 3 via Lyman-alpha (Lya) emission and the feasibility of cold accretion as the main driver of Lya blobs (LABs). We run cosmological zoom simulations focusing on 3 halos spanning two orders of magnitude in mass, roughly from 10^11 to 10^13 solar masses. We use a version of the Ramses code that includes radiative transfer of UV photons, and we employ a refinement strategy that allows us to resolve accretion streams in their natural environment to an unprecedented level. For the first time, we self-consistently model self-shielding in the cold streams from the cosmological UV background, which enables us to predict their temperatures, ionization states and Lya luminosities with improved accuracy. We find the efficiency of gravitational heating in cold streams in a ~10^11 solar mass halo is around 10-20% throughout most of the halo but reaching much higher values close to the center. As a result most of the Lya luminosity comes from gas which is concentrated at the central 20% of the halo radius, leading to Lya emission which is not extended. In more massive halos, of >10^12 solar masses, cold accretion is complex and disrupted, and gravitational heating does not happen as a steady process. Ignoring the factors of Lya scattering, local UV enhancement, and SNe feedback, cold accretion alone in these massive halos can produce LABs that largely agree with observations in terms of morphology, extent, and luminosity. Our simulations slightly and systematically over-predict LAB abundances, perhaps hinting that the interplay of these ignored factors may have a negative net effect on extent and luminosity. We predict that a factor of a few increase in sensitivity from current observational limits should unambiguously reveal continuum-free accretion streams around massive galaxies at z=3.

قيم البحث

اقرأ أيضاً

113 - Zheng Zheng 2010
Lyman-alpha (Lya) photons that escape the interstellar medium of star-forming galaxies may be resonantly scattered by neutral hydrogen atoms in the circumgalactic and intergalactic media, thereby increasing the angular extent of the galaxys Lya emiss ion. We present predictions of this extended, low surface brightness Lya emission based on radiative transfer modeling in a cosmological reionization simulation. The extended emission can be detected from stacked narrowband images of Lya emitters (LAEs) or of Lyman break galaxies (LBGs). Its average surface brightness profile has a central cusp, then flattens to an approximate plateau beginning at an inner characteristic scale below ~0.2 Mpc (comoving), then steepens again beyond an outer characteristic scale of ~1 Mpc. The inner scale marks the transition from scattered light of the central source to emission from clustered sources, while the outer scale marks the spatial extent of scattered emission from these clustered sources. Both scales tend to increase with halo mass, UV luminosity, and observed Lya luminosity. The extended emission predicted by our simulation is already within reach of deep narrowband photometry using large ground-based telescopes. Such observations would test radiative transfer models of emission from LAEs and LBGs, and they would open a new window on the circumgalactic environment of high-redshift star-forming galaxies.
We searched for star formation activity associated with high-z Damped Lyman-alpha systems (DLAs) with Subaru telescope. We used a set of narrow-band (NB) filters whose central wavelengths correspond to the redshifted Lyman-alpha emission lines of tar geted DLA absorbers at 3<z<4.5. We detected one apparent NB-excess object located 3.80 arcsec (~28kpc) away from the quasar SDSS J031036.84+005521.7. Follow-up spectroscopy revealed an asymmetric Lyman-alpha emission at z_em=3.115+/-0.003, which perfectly matches the sub-DLA trough at z_abs=3.1150 with logN(HI)/cm^-2=20.05. The Lyman-alpha luminosity is estimated to be L(LyA)=1.07x10^42 erg s^-1, which corresponds to a star formation rate of 0.97 M_odot yr^-1. Interestingly, the detected Lyman-alpha emission is spatially extended with a sharp peak. The large extent of the Lyman-alpha emission is remarkably one-sided toward the quasar line-of-sight, and is redshifted. The observed spatially asymmetric surface brightness profile can be qualitatively explained by a model of a DLA host galaxy, assuming a galactic outflow and a clumpy distribution of HI clouds in the circumgalactic medium. This large Lyman-alpha extension, which is similar to those found in Rauch et al. (2008), could be the result of complicated anisotropic radiative transfer through the surrounding neutral gas embedded in the DLA.
94 - Hidenobu Yajima 2012
The Lyman-alpha (Lya) emission has played an important role in detecting high-redshift galaxies, including recently distant ones at redshift z > 7. It may also contain important information on the origin of these galaxies. Here, we investigate the fo rmation of a typical L* galaxy and its observational signatures at the earliest stage, by combining a cosmological hydrodynamic simulation with three-dimensional radiative transfer calculations using the newly improved ART^2 code. Our cosmological simulation uses the Aquila initial condition which zooms in onto a Milky Way-like halo with high resolutions, and our radiative transfer couples multi-wavelength continuum, Lya line, and ionization of hydrogen. We find that the modeled galaxy starts to form at redshift z ~ 24 through efficient accretion of cold gas, which produces a strong Lya line with a luminosity of L(Lya) ~ 10^42 erg/s as early as z ~ 14. The Lya emission appears to trace the cold, dense gas. The lines exhibit asymmetric, single-peak profiles, and are shifted to the blue wing, a characteristic feature of gas inflow. Moreover, the contribution to the total Lya luminosity by excitation cooling increases with redshift, and it becomes dominant at z >~ 6. We predict that L* galaxies such as the modeled one may be detected at z <~ 8 by JWST and ALMA with a reasonable integration time. Beyond redshift 12, however, only Lya line may be observable by spectroscopic surveys. Our results suggest that Lya line is one of the most powerful tools to detect the first generation of galaxies, and to decipher their formation mechanism.
As a result of resonant scatterings off hydrogen atoms, Lyman-alpha (Lya) emission from star-forming galaxies provides a probe of the (hardly isotropic) neutral gas environment around them. We study the effect of the environmental anisotropy on the o bserved Lya emission by performing radiative transfer calculations for models of neutral hydrogen clouds with prescriptions of spatial and kinematic anisotropies. The environmental anisotropy leads to corresponding anisotropy in the Lya flux and spectral properties and induces correlations among them. The Lya flux (or observed luminosity) depends on the viewing angle and shows an approximate correlation with the initial Lya optical depth in the viewing direction relative to those in all other directions. The distribution of Lya flux from a set of randomly oriented clouds is skewed to high values, providing a natural contribution to the Lya equivalent width (EW) distribution seen in observation. A narrower EW distribution is found at a larger peak offset of the Lya line, similar to the trend suggested in observation. The peak offset appears to correlate with the line shape (full width at half maximum and asymmetry), pointing to a possibility of using Lya line features alone to determine the systemic redshifts of galaxies. The study suggests that anisotropies in the spatial and kinematic distributions of neutral hydrogen can be an important ingredient in shaping the observed properties of Lya emission from star-forming galaxies. We discuss the implications of using Lya emission to probe the circumgalactic and intergalactic environments of galaxies.
130 - Juna A. Kollmeier 2009
We present predictions for the fluorescent Lyman-alpha emission signature arising from photoionized, optically thick structures in Smoothed Particle Hydrodynamic (SPH) cosmological simulations of a Lambda-CDM universe using a Monte Carlo Lyman-alpha radiative transfer code. We calculate the expected Lyman-alpha image and 2-dimensional spectra for gas exposed to a uniform ultraviolet ionizing background as well as gas exposed additionally to the photoionizing radiation from a local quasar, after correcting for the self-shielding of hydrogen. As a test of our numerical methods and for application to current observations, we examine simplified analytic structures that are uniformly or anisotropically illuminated. We compare these results with recent observations. We discuss future observing campaigns on large telescopes and realistic strategies for detecting fluorescence owing to the ambient metagalactic ionization and in regions close to bright quasars. While it will take hundreds of hours on the current generation of telescopes to detect fluorescence caused by the ultraviolet background (UVB) alone, our calculations suggest that of order ten sources of quasar-induced fluorescent Lyman-alpha emission should be detectable after a 10 hour exposure in a 10 arcmin^2 field around a bright quasar. These observations will help probe the physical conditions in the densest regions of the intergalactic medium as well as the temporal light curves and isotropy of quasar radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا