ترغب بنشر مسار تعليمي؟ اضغط هنا

PAH Emission Within Lyman Alpha Blobs

178   0   0.0 ( 0 )
 نشر من قبل James W. Colbert
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Spitzer observations of Lya Blobs (LAB) at z=2.38-3.09. The mid-infrared ratios (4.5/8um and 8/24um) indicate that ~60% of LAB infrared counterparts are cool, consistent with their infrared output being dominated by star formation and not active galactic nuclei (AGN). The rest have a substantial hot dust component that one would expect from an AGN or an extreme starburst. Comparing the mid-infrared to submillimeter fluxes (~850um or rest frame far infrared) also indicates a large percentage (~2/3) of the LAB counterparts have total bolometric energy output dominated by star formation, although the number of sources with sub-mm detections or meaningful upper limits remains small (~10). We obtained Infrared Spectrograph (IRS) spectra of 6 infrared-bright sources associated with LABs. Four of these sources have measurable polycyclic aromatic hydrocarbon (PAH) emission features, indicative of significant star formation, while the remaining two show a featureless continuum, indicative of infrared energy output completely dominated by an AGN. Two of the counterparts with PAHs are mixed sources, with PAH line-to-continuum ratios and PAH equivalent widths indicative of large energy contributions from both star formation and AGN. Most of the LAB infrared counterparts have large stellar masses, around 10^11 Mo. There is a weak trend of mass upper limit with the Lya luminosity of the host blob, particularly after the most likely AGN contaminants are removed. The range in likely energy sources for the LABs found in this and previous studies suggests that there is no single source of power that is producing all the known LABs.

قيم البحث

اقرأ أيضاً

367 - Y. Ao , Y. Matsuda , A. Beelen 2015
Lyman alpha blobs (LABs) are spatially extended lyman alpha nebulae seen at high redshift. The origin of Lyman alpha emission in the LABs is still unclear and under debate. To study their heating mechanism(s), we present Australia Telescope Compact A rray (ATCA) observations of the 20 cm radio emission and Herschel PACS and SPIRE measurements of the far-infrared (FIR) emission towards the four LABs in the protocluster J2143-4423 at z=2.38. Among the four LABs, B6 and B7 are detected in the radio with fluxes of 67+/-17 microJy and 77+/-16 microJy, respectively, and B5 is marginally detected at 3 sigma (51+/-16 microJy). For all detected sources, their radio positions are consistent with the central positions of the LABs. B6 and B7 are obviously also detected in the FIR. By fitting the data with different templates, we obtained redshifts of 2.20$^{+0.30}_{-0.35}$ for B6 and 2.20$^{+0.45}_{-0.30}$ for B7 which are consistent with the redshift of the lyman alpha emission within uncertainties, indicating that both FIR sources are likely associated with the LABs. The associated FIR emission in B6 and B7 and high star formation rates strongly favor star formation in galaxies as an important powering source for the lyman alpha emission in both LABs. However, the other two, B1 and B5, are predominantly driven by the active galactic nuclei or other sources of energy still to be specified, but not mainly by star formation. In general, the LABs are powered by quite diverse sources of energy.
As a result of resonant scatterings off hydrogen atoms, Lyman-alpha (Lya) emission from star-forming galaxies provides a probe of the (hardly isotropic) neutral gas environment around them. We study the effect of the environmental anisotropy on the o bserved Lya emission by performing radiative transfer calculations for models of neutral hydrogen clouds with prescriptions of spatial and kinematic anisotropies. The environmental anisotropy leads to corresponding anisotropy in the Lya flux and spectral properties and induces correlations among them. The Lya flux (or observed luminosity) depends on the viewing angle and shows an approximate correlation with the initial Lya optical depth in the viewing direction relative to those in all other directions. The distribution of Lya flux from a set of randomly oriented clouds is skewed to high values, providing a natural contribution to the Lya equivalent width (EW) distribution seen in observation. A narrower EW distribution is found at a larger peak offset of the Lya line, similar to the trend suggested in observation. The peak offset appears to correlate with the line shape (full width at half maximum and asymmetry), pointing to a possibility of using Lya line features alone to determine the systemic redshifts of galaxies. The study suggests that anisotropies in the spatial and kinematic distributions of neutral hydrogen can be an important ingredient in shaping the observed properties of Lya emission from star-forming galaxies. We discuss the implications of using Lya emission to probe the circumgalactic and intergalactic environments of galaxies.
In order to constrain the bolometric luminosities, dust properties and molecular gas content of giant Lyman alpha nebulae, the so-called Lyman alpha blobs, we have carried out a study of dust continuum and CO line emission in two well-studied represe ntatives of this population at z ~ 3: a Lya blob discovered by its strong Spitzer MIPS 24um detection (LABd05; Dey et al. 2005) and the Steidel blob 1 (SSA22-LAB01; Steidel et al. 2000). We find that the spectral energy distribution of LABd05 is well described by an AGN-starburst composite template with L(FIR) = (4.0 +/- 0.5) x 10^12 Lsun, comparable to high-z sub-millimeter galaxies and ultraluminous infrared galaxies. New APEX/LABOCA 870um measurements rule out the reported SCUBA detection of the SSA22-LAB01 (S[850um] = 16.8 mJy) at the > 4sigma level. Consistent with this, ultra-deep Plateau de Bure Interferometer (PdBI) observations with ~2arcsec spatial resolution also fail to detect any 1.2mm continuum source down to ~0.45mJy per beam (3sigma). Combined with the existing (sub)mm observations in the literature, we conclude that the FIR luminosity of SSA22-LAB01 remains uncertain. No CO line is detected in either case down to integrated flux limits of (Snu dV) < 0.25--1.0 Jy km/s, indicating a modest molecular gas reservoir, M(H_2) < 1--3 x 10^10 Msun. The non-detections exclude, with high significance (12 sigma), the previous tentative detection of a CO(4-3) line in the SSA22-LAB01. The increased sensitivity afforded by ALMA will be critical in studying molecular gas and dust in these interesting systems.
Recent theoretical work has suggested that Lyman-alpha nebulae could be substantially polarized in the Lyman-alpha emission line, depending on the geometry, kinematics, and powering mechanism at work. Polarization observations can therefore provide a useful constraint on the source of ionization in these systems. In this Letter, we present the first Lyman-alpha polarization measurements for a giant Lyman-alpha nebula at z~2.656. We do not detect any significant linear polarization of the Lyman-alpha emission: P_{Lyman-alpha}=2.6+/-2.8% (corrected for statistical bias) within a single large aperture. The current data also do not show evidence for the radial polarization gradient predicted by some theoretical models. These results rule out singly scattered Lyman-alpha (e.g., from the nearby AGN) and may be inconsistent with some models of backscattering in a spherical outflow. However, the effects of seeing, diminished signal-to-noise ratio, and angle averaging within radial bins make it difficult to put strong constraints on the radial polarization profile. The current constraints may be consistent with higher density outflow models, spherically symmetric infall models, photoionization by star formation within the nebula or the nearby AGN, resonant scattering, or non-spherically symmetric cold accretion (i.e., along filaments). Higher signal-to-noise ratio data probing to higher spatial resolution will allow us to harness the full diagnostic power of polarization observations in distinguishing between theoretical models of giant Lyman-alpha nebulae.
We present the results of a high-spatial-resolution study of the line emission in a sample of z=3.1 Lyman-Alpha-Emitting Galaxies (LAEs) in the Extended Chandra Deep Field-South. Of the eight objects with coverage in our HST/WFPC2 narrow-band imaging , two have clear detections and an additional two are barely detected (~2-sigma). The clear detections are within ~0.5 kpc of the centroid of the corresponding rest-UV continuum source, suggesting that the line-emitting gas and young stars in LAEs are spatially coincident. The brightest object exhibits extended emission with a half-light radius of ~1.5 kpc, but a stack of the remaining LAE surface brightness profiles is consistent with the WFPC2 point spread function. This suggests that the Lyman Alpha emission in these objects originates from a compact (<~2 kpc) region and cannot be significantly more extended than the far-UV continuum emission (<~1 kpc). Comparing our WFPC2 photometry to previous ground-based measurements of their monochromatic fluxes, we find at 95% (99.7%) confidence that we cannot be missing more than 22% (32%) of the Lyman Alpha emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا