ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the Experimental Probe of Inflationary Cosmology (EPIC)-Intemediate Mission for NASAs Einstein Inflation Probe

66   0   0.0 ( 0 )
 نشر من قبل Asantha R. Cooray
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements of Cosmic Microwave Background (CMB) anisotropy have served as the best experimental probe of the early universe to date. The inflationary paradigm, inspired in part by the extreme isotropy of the CMB, is now a cornerstone in modern cosmology. Inflation has passed a series of rigorous experimental tests, but we still do not understand the physical mechanism or energy scale behind inflation. A general prediction of inflation and one that can provide certain insights into inflationary physics is a background of primordial gravitational waves. These perturbations leave a distinct signature in the CMB B-modes of polarization. The EPIC (Experimental Probe of Inflationary Cosmology) study team has investigated several CMB polarization mission concepts to carry out a definitive measurement of the inflationary B-mode polarization spectrum. In this report we study a mission with an aperture intermediate between the two missions discussed in our previous report. EPIC-IMs increased aperture allows access to a broader science case than the small EPIC-Low Cost mission. In addition to the search for inflationary gravitational waves, the increase aperture allows us to mine the scale polarization and lensing shear polarization signals down to cosmological limits, so that we extract virtually all the cosmological information available from the CMB. In addition, a modest number of channels operating at higher frequencies allows for an all-sky measurement of polarized Galactic dust, which will provide a rich dataset for Galactic science related to magnetic fields. Using a combination of a large sensitivity focal plane with a new optical design, and an efficient 4K mechanical cooler, EPIC-IM realizes higher sensitivity than EPIC-Comprehensive Science mission.



قيم البحث

اقرأ أيضاً

This is the Phase 1 Report on the Experimental Probe of Inflationary Cosmology (EPIC), a mission concept study for NASAs Einstein Inflation Probe. When we began our study we sought to answer five fundamental implementation questions: 1) can foregroun ds be measured and subtracted to a sufficiently low level?; 2) can systematic errors be controlled?; 3) can we develop optics with sufficiently large throughput, low polarization, and frequency coverage from 30 to 300 GHz?; 4) is there a technical path to realizing the sensitivity and systematic error requirements?; and 5) what are the specific mission architecture parameters, including cost? Detailed answers to these questions are contained in this report. Currently in Phase 2, we are exploring a mission concept targeting a ~2m aperture, in between the two options described in the current report with a small (~30 cm) and large (~4m) missions.
223 - Weimin Yuan , C. Zhang , H. Feng 2015
Einstein Probe is a small mission dedicated to time-domain high-energy astrophysics. Its primary goals are to discover high-energy transients and to monitor variable objects in the $0.5-4~$keV X-rays, at higher sensitivity by one order of magnitude t han those of the ones currently in orbit. Its wide-field imaging capability, featuring a large instantaneous field-of-view ($60^circ times60^circ$, $sim1.1$sr), is achieved by using established technology of micro-pore (MPO) lobster-eye optics, thereby offering unprecedentedly high sensitivity and large Grasp. To complement this powerful monitoring ability, it also carries a narrow-field, sensitive follow-up X-ray telescope based on the same MPO technology to perform follow-up observations of newly-discovered transients. Public transient alerts will be downlinked rapidly, so as to trigger multi-wavelength follow-up observations from the world-wide community. Over three of its 97-minute orbits almost the entire night sky will be sampled, with cadences ranging from 5 to 25 times per day. The scientific objectives of the mission are: to discover otherwise quiescent black holes over all astrophysical mass scales by detecting their rare X-ray transient flares, particularly tidal disruption of stars by massive black holes at galactic centers; to detect and precisely locate the electromagnetic sources of gravitational-wave transients; to carry out systematic surveys of X-ray transients and characterize the variability of X-ray sources. Einstein Probe has been selected as a candidate mission of priority (no further selection needed) in the Space Science Programme of the Chinese Academy of Sciences, aiming for launch around 2020.
The Hera Saturn entry probe mission is proposed as an M--class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier-Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturns atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Heras aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems.
The Probe of Inflation and Cosmic Origins (PICO) is a NASA-funded study of a Probe-class mission concept. The top-level science objectives are to probe the physics of the Big Bang by measuring or constraining the energy scale of inflation, probe fund amental physics by measuring the number of light particles in the Universe and the sum of neutrino masses, to measure the reionization history of the Universe, and to understand the mechanisms driving the cosmic star formation history, and the physics of the galactic magnetic field. PICO would have multiple frequency bands between 21 and 799 GHz, and would survey the entire sky, producing maps of the polarization of the cosmic microwave background radiation, of galactic dust, of synchrotron radiation, and of various populations of point sources. Several instrument configurations, optical systems, cooling architectures, and detector and readout technologies have been and continue to be considered in the development of the mission concept. We will present a snapshot of the baseline mission concept currently under development.
The Probe of Inflation and Cosmic Origins (PICO) is an imaging polarimeter that will scan the sky for 5 years in 21 frequency bands spread between 21 and 799 GHz. It will produce full-sky surveys of intensity and polarization with a final combined-ma p noise level of 0.87 $mu$K arcmin for the required specifications, equivalent to 3300 Planck missions, and with our current best-estimate would have a noise level of 0.61 $mu$K arcmin (6400 Planck missions). PICO will either determine the energy scale of inflation by detecting the tensor to scalar ratio at a level $r=5times 10^{-4}~(5sigma)$, or will rule out with more than $5sigma$ all inflation models for which the characteristic scale in the potential is the Planck scale. With LSSTs data it could rule out all models of slow-roll inflation. PICO will detect the sum of neutrino masses at $>4sigma$, constrain the effective number of light particle species with $Delta N_{rm eff}<0.06~(2sigma)$, and elucidate processes affecting the evolution of cosmic structures by measuring the optical depth to reionization with errors limited by cosmic variance and by constraining the evolution of the amplitude of linear fluctuations $sigma_{8}(z)$ with sub-percent accuracy. Cross-correlating PICOs map of the thermal Sunyaev-Zeldovich effect with LSSTs gold sample of galaxies will precisely trace the evolution of thermal pressure with $z$. PICOs maps of the Milky Way will be used to determine the make up of galactic dust and the role of magnetic fields in star formation efficiency. With 21 full sky legacy maps in intensity and polarization, which cannot be obtained in any other way, the mission will enrich many areas of astrophysics. PICO is the only single-platform instrument with the combination of sensitivity, angular resolution, frequency bands, and control of systematic effects that can deliver this compelling, timely, and broad science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا