ترغب بنشر مسار تعليمي؟ اضغط هنا

PICO - the probe of inflation and cosmic origins

205   0   0.0 ( 0 )
 نشر من قبل Shaul Hanany
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Probe of Inflation and Cosmic Origins (PICO) is a NASA-funded study of a Probe-class mission concept. The top-level science objectives are to probe the physics of the Big Bang by measuring or constraining the energy scale of inflation, probe fundamental physics by measuring the number of light particles in the Universe and the sum of neutrino masses, to measure the reionization history of the Universe, and to understand the mechanisms driving the cosmic star formation history, and the physics of the galactic magnetic field. PICO would have multiple frequency bands between 21 and 799 GHz, and would survey the entire sky, producing maps of the polarization of the cosmic microwave background radiation, of galactic dust, of synchrotron radiation, and of various populations of point sources. Several instrument configurations, optical systems, cooling architectures, and detector and readout technologies have been and continue to be considered in the development of the mission concept. We will present a snapshot of the baseline mission concept currently under development.

قيم البحث

اقرأ أيضاً

The Probe of Inflation and Cosmic Origins (PICO) is an imaging polarimeter that will scan the sky for 5 years in 21 frequency bands spread between 21 and 799 GHz. It will produce full-sky surveys of intensity and polarization with a final combined-ma p noise level of 0.87 $mu$K arcmin for the required specifications, equivalent to 3300 Planck missions, and with our current best-estimate would have a noise level of 0.61 $mu$K arcmin (6400 Planck missions). PICO will either determine the energy scale of inflation by detecting the tensor to scalar ratio at a level $r=5times 10^{-4}~(5sigma)$, or will rule out with more than $5sigma$ all inflation models for which the characteristic scale in the potential is the Planck scale. With LSSTs data it could rule out all models of slow-roll inflation. PICO will detect the sum of neutrino masses at $>4sigma$, constrain the effective number of light particle species with $Delta N_{rm eff}<0.06~(2sigma)$, and elucidate processes affecting the evolution of cosmic structures by measuring the optical depth to reionization with errors limited by cosmic variance and by constraining the evolution of the amplitude of linear fluctuations $sigma_{8}(z)$ with sub-percent accuracy. Cross-correlating PICOs map of the thermal Sunyaev-Zeldovich effect with LSSTs gold sample of galaxies will precisely trace the evolution of thermal pressure with $z$. PICOs maps of the Milky Way will be used to determine the make up of galactic dust and the role of magnetic fields in star formation efficiency. With 21 full sky legacy maps in intensity and polarization, which cannot be obtained in any other way, the mission will enrich many areas of astrophysics. PICO is the only single-platform instrument with the combination of sensitivity, angular resolution, frequency bands, and control of systematic effects that can deliver this compelling, timely, and broad science.
73 - S. Hanany , M. Alvarez , E. Artis 2019
The Probe of Inflation and Cosmic Origins (PICO) is a proposed probe-scale space mission consisting of an imaging polarimeter operating in frequency bands between 20 and 800 GHz. We describe the science achievable by PICO, which has sensitivity equiv alent to more than 3300 Planck missions, the technical implementation, the schedule and cost.
The Probe of Inflation and Cosmic Origins (PICO) is a probe-class mission concept currently under study by NASA. PICO will probe the physics of the Big Bang and the energy scale of inflation, constrain the sum of neutrino masses, measure the growth o f structures in the universe, and constrain its reionization history by making full sky maps of the cosmic microwave background with sensitivity 80 times higher than the Planck space mission. With bands at 21-799 GHz and arcmin resolution at the highest frequencies, PICO will make polarization maps of Galactic synchrotron and dust emission to observe the role of magnetic fields in Milky Ways evolution and star formation. We discuss PICOs optical system, focal plane, and give current best case noise estimates. The optical design is a two-reflector optimized open-Dragone design with a cold aperture stop. It gives a diffraction limited field of view (DLFOV) with throughput of 910 square cm sr at 21 GHz. The large 82 square degree DLFOV hosts 12,996 transition edge sensor bolometers distributed in 21 frequency bands and maintained at 0.1 K. We use focal plane technologies that are currently implemented on operating CMB instruments including three-color multi-chroic pixels and multiplexed readouts. To our knowledge, this is the first use of an open-Dragone design for mm-wave astrophysical observations, and the only monolithic CMB instrument to have such a broad frequency coverage. With current best case estimate polarization depth of 0.65 microK(CMB}-arcmin over the entire sky, PICO is the most sensitive CMB instrument designed to date.
We describe a space-borne, multi-band, multi-beam polarimeter aiming at a precise and accurate measurement of the polarization of the Cosmic Microwave Background. The instrument is optimized to be compatible with the strict budget requirements of a m edium-size space mission within the Cosmic Vision Programme of the European Space Agency. The instrument has no moving parts, and uses arrays of diffraction-limited Kinetic Inductance Detectors to cover the frequency range from 60 GHz to 600 GHz in 19 wide bands, in the focal plane of a 1.2 m aperture telescope cooled at 40 K, allowing for an accurate extraction of the CMB signal from polarized foreground emission. The projected CMB polarization survey sensitivity of this instrument, after foregrounds removal, is 1.7 {mu}K$cdot$arcmin. The design is robust enough to allow, if needed, a downscoped version of the instrument covering the 100 GHz to 600 GHz range with a 0.8 m aperture telescope cooled at 85 K, with a projected CMB polarization survey sensitivity of 3.2 {mu}K$cdot$arcmin.
Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology. In this paper, we list the requirements for a future CMB polarisation survey ad dressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the M5 call for a medium-sized mission. The rationale and options, and the methodologies used to assess the missions performance, are of interest to other future CMB mission design studies. CORE is designed as a near-ultimate CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation scienceand cannot be obtained by any other means than a dedicated space mission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا