ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hera Saturn Entry Probe Mission

70   0   0.0 ( 0 )
 نشر من قبل Olivier Mousis
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Hera Saturn entry probe mission is proposed as an M--class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier-Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturns atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Heras aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems.

قيم البحث

اقرأ أيضاً

The innovative Saturn Ring Skimmer mission concept enables a wide range of investigations that address fundamental questions about Saturn and its rings, as well as giant planets and astrophysical disk systems in general. This mission would provide ne w insights into the dynamical processes that operate in astrophysical disk systems by observing individual particles in Saturns rings for the first time. The Ring Skimmer would also constrain the origin, history, and fate of Saturns rings by determining their compositional evolution and material transport rates. In addition, the Ring Skimmer would reveal how the rings, magnetosphere, and planet operate as an inter-connected system by making direct measurements of the rings atmosphere, Saturns inner magnetosphere and the material owing from the rings into the planet. At the same time, this mission would clarify the dynamical processes operating in the planets visible atmosphere and deep interior by making extensive high-resolution observations of cloud features and repeated measurements of the planets extremely dynamic gravitational field. Given the scientific potential of this basic mission concept, we advocate that it be studied in depth as a potential option for the New Frontiers program.
This is a white paper submitted to the Planetary Science and Astrobiology Decadal Survey. The deep atmosphere of Venus is largely unexplored and yet may harbor clues to the evolutionary pathways for a major silicate planet with implications across th e solar system and beyond. In situ data is needed to resolve significant open questions related to the evolution and present-state of Venus, including questions of Venus possibly early habitability and current volcanic outgassing. Deep atmosphere probe-based in situ missions carrying analytical suites of instruments are now implementable in the upcoming decade (before 2030), and will both reveal answers to fundamental questions on Venus and help connect Venus to exoplanet analogs to be observed in the JWST era of astrophysics.
The determination of Saturns atmospheric noble gas abundances are critical to understanding the formation and evolution of Saturn, and giant planets in general. These measurements can only be performed with an entry probe. A Saturn probe will address whether enhancement in heavy noble gases, as was found in Jupiter, are a general feature of giant planets, and their ratios will be a powerful constraint on how they form. The helium abundance will show the extent to which helium has phase separated from hydrogen in the planets deep interior. Jupiters striking neon depletion may also be tied to its helium depletion, and must be confirmed or refuted in Saturn. Together with Jupiters measured atmospheric helium abundance, a consistent evolutionary theory for both planets, including helium rain will be possible. We will then be able to calibrate the theory of the evolution of all giant planets, including exoplanets. In addition, high pressure H/He mixtures under giant planet conditions are an important area of condensed matter physics that are beyond the realm of experiment.
The CHaracterising ExOPlanet Satellite (CHEOPS) was selected in 2012, as the first small mission in the ESA Science Programme and successfully launched in December 2019. CHEOPS is a partnership between ESA and Switzerland with important contributions by ten additional ESA Member States. CHEOPS is the first mission dedicated to search for transits of exoplanets using ultrahigh precision photometry on bright stars already known to host planets. As a follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible, existing radii measurements or provide first accurate measurements for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys and to following phase curves. CHEOPS will provide prime targets for future spectroscopic atmospheric characterisation. Requirements on the photometric precision and stability have been derived for stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars in the magnitude range between 6 and 9 by achieving a photometric precision of 20 ppm in 6 hours of integration. For K stars in the magnitude range between 9 and 12, CHEOPS shall be able to detect transiting Neptune-size planets achieving a photometric precision of 85 ppm in 3 hours of integration. This is achieved by using a single, frame-transfer, back-illuminated CCD detector at the focal plane assembly of a 33.5 cm diameter telescope. The 280 kg spacecraft has a pointing accuracy of about 1 arcsec rms and orbits on a sun-synchronous dusk-dawn orbit at 700 km altitude. The nominal mission lifetime is 3.5 years. During this period, 20% of the observing time is available to the community through a yearly call and a discretionary time programme managed by ESA.
The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to observe cosmic neutrinos (CNs) above 20 PeV and ultra-high energy cosmic rays (UHECRs) above 20 EeV over the full sky. The POEMMA mission calls for two identical satellites fly ing in loose formation, each comprised of a 4-meter wide field-of-view (45 degrees) Schmidt photometer. The hybrid focal surface includes a fast (1 ${mu}$s) ultraviolet camera for fluorescence observations and an ultrafast (10 ns) optical camera for Cherenkov observations. POEMMA will provide new multi-messenger windows onto the most energetic events in the universe, enabling the study of new astrophysics and particle physics at these otherwise inaccessible energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا