ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating the Disk-Corona Relation in a Blue AGN Sample

269   0   0.0 ( 0 )
 نشر من قبل Jieying Liu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compile a blue AGN sample from SDSS and investigate the ratio of hard X-ray to bolometric luminosity in dependence on Eddington ratio and black hole mass. Our sample comprises 240 radio-quiet Seyfert 1 galaxies and QSOs. We find that the fraction of hard X-ray luminosity (log$(L_{rm 2-10 kev}/L_{rm bol})$) decreases with the increase of Eddington ratio. We also find that the fraction of hard X-ray luminosity is independent on the black hole mass for the radio-quiet AGNs. The relation of log$(L_{rm 2-10 kev}/L_{rm bol})$ decreasing with increasing Eddington ratio indicates that X-ray bolometric correction is not a constant, from a larger sample supporting the results of Vasudevan & Fabian (2007). We interpret our results by the disk corona evaporation/condensation model (Meyer et al. cite{me200}; Liu et al. 2002a; Liu et al. 2007). In the frame of this model, the Compton cooling becomes efficient in cooling of the corona at high accretion rate (in units of Eddington rate), leading to condensation of corona gas to the disk. Consequently, the relative strength of corona to the disk becomes weaker at higher Eddington ratio. Therefore, the fraction of hard X-ray emission to disk emission and hence to the bolometric emission is smaller at higher Eddington ratio. The independence of the fraction of hard X-ray luminosity on the mass of the black hole can also be explained by the disk corona model since the corona structure and luminosity (in units of Eddington luminosity) are independent on the mass of black holes.



قيم البحث

اقرأ أيضاً

The correlation observed between monochromatic X-ray and UV luminosities in radiatively-efficient active galactic nuclei (AGN) lacks a clear theoretical explanation despite being used for many applications. Such a correlation, with its small intrinsi c scatter and its slope that is smaller than unity in log space, represents the compelling evidence that a mechanism regulating the energetic interaction between the accretion disk and the X-ray corona must be in place. This ensures that going from fainter to brighter sources the coronal emission increases less than the disk emission. We discuss here a self-consistently coupled disk-corona model that can identify this regulating mechanism in terms of modified viscosity prescriptions in the accretion disk. The model predicts a lower fraction of accretion power dissipated in the corona for higher accretion states. We then present a quantitative observational test of the model using a reference sample of broad-line AGN and modeling the disk-corona emission for each source in the $L_X-L_{UV}$ plane. We used the slope, normalization, and scatter of the observed relation to constrain the parameters of the theoretical model. For non-spinning black holes and static coronae, we find that the accretion prescriptions that match the observed slope of the $L_X-L_{UV}$ relation produce X-rays that are too weak with respect to the normalization of the observed relation. Instead, considering moderately-outflowing Comptonizing coronae and/or a more realistic high-spinning black hole population significantly relax the tension between the strength of the observed and modeled X-ray emission, while also predicting very low intrinsic scatter in the $L_X-L_{UV}$ relation. In particular, this latter scenario traces a known selection effect of flux-limited samples that preferentially select high-spinning, hence brighter, sources.
The truncation of an optically thick, geometrically thin accretion disk is investigated in the context of low luminosity AGN (LLAGN). We generalize the disk evaporation model used in the interpretative framework of black hole X-ray binaries by includ ing the effect of a magnetic field in accretion disks surrounding supermassive black holes. The critical transition mass accretion rate for which the disk is truncated is found to be insensitive to magnetic effects, but its inclusion leads to a smaller truncation radius in comparison to a model without its consideration. That is, a thin viscous disk is truncated for LLAGN at an Eddington ratio less than 0.03 for a standard viscosity parameter ($alpha = 0.3$). An increase of the viscosity parameter results in a higher critical transition mass accretion rate and a correspondingly smaller truncation distance, the latter accentuated by greater magnetic energy densities in the disk. Based on these results, the truncation radii inferred from spectral fits of LLAGN published in the literature are consistent with the disk evaporation model. The infrared emission arising from the truncated geometrically thin accretion disks may be responsible for the red bump seen in such LLAGN.
Accretion flows toward black holes can be of a quite different nature, described as an optically thick cool gas flow in a disk for high accretion rates or as a hot coronal optically thin gas flow for low accretion rates, possibly affected by outflowi ng gas. The detection of broad iron emission lines in active galactic nuclei (AGN) indicates the coexistence of corona and disk. The appearance and relative strength of such flows essentially depends on their interaction. Liu et al. suggested that condensation of gas from the corona to the disk allows to understand accretion flows of comparable strength of emission. Matter inflow due to gravitational capture of gas is important for the condensation process. We discuss observational features predicted by the model. Data from simultaneous observations of AGN with {it {Swifts}} X-ray and UV-optical telescopes are compared with the theoretical predictions. The frequent detection of broad iron K$alpha$ emission lines and the dependence of the emitted spectra on the Eddington ratio, described by the values of the photon index $Gamma$ and the two-point spectral index $alpha_{rm{ox}}$ are in approximate agreement with the predictions of the condensation model; the latter, however, with a large scatter. The model further yields a coronal emission concentrated in a narrow inner region as is also deduced from the analysis of emissivity profiles. The accretion flows in bright AGN could be described by the accretion of stellar wind or interstellar medium and its condensation into a thin disk.
113 - Mouyuan Sun 2020
Active galactic nuclei (AGNs) have long been observed to twinkle (i.e., their brightness varies with time) on timescales from days to years in the UV/optical bands. Such AGN UV/optical variability is essential for probing the physics of supermassive black holes (SMBHs), the accretion disk, and the broad-line region. Here we show that the temperature fluctuations of an AGN accretion disk, which is magnetically coupled with the corona, can account for observed high-quality AGN optical light curves. We calculate the temperature fluctuations by considering the gas physics of the accreted matter near the SMBH. We find that the resulting simulated AGN UV/optical light curves share the same statistical properties as the observed ones as long as the dimensionless viscosity parameter $alpha$, which is widely believed to be controlled by magnetohydrodynamic (MHD) turbulence in the accretion disk, is about $0.01$---$0.2$. Moreover, our model can simultaneously explain the larger-than-expected accretion disk sizes and the dependence of UV/optical variability upon wavelength for NGC 5548. Our model also has the potential to explain some other observational facts of AGN UV/optical variability, including the timescale-dependent bluer-when-brighter color variability and the dependence of UV/optical variability on AGN luminosity and black hole mass. Our results also demonstrate a promising way to infer the black-hole mass, the accretion rate, and the radiative efficiency, thereby facilitating understanding of the gas physics and MHD turbulence near the SMBH and its cosmic mass growth history by fitting the AGN UV/optical light curves in the era of time-domain astronomy.
173 - S. F. Zhu , W. N. Brandt , B. Luo 2020
Radio-loud quasars (RLQs) are more X-ray luminous than predicted by the X-ray-optical/UV relation (i.e. $L_mathrm{x}propto L_mathrm{uv}^gamma$) for radio-quiet quasars (RQQs). The excess X-ray emission depends on the radio-loudness parameter ($R$) an d radio spectral slope ($alpha_mathrm{r}$). We construct a uniform sample of 729 optically selected RLQs with high fractions of X-ray detections and $alpha_mathrm{r}$ measurements.We find that steep-spectrum radio quasars (SSRQs; $alpha_mathrm{r}le-0.5$) follow a quantitatively similar $L_mathrm{x}propto L_mathrm{uv}^gamma$ relation as that for RQQs, suggesting a common coronal origin for the X-ray emission of both SSRQs and RQQs. However, the corresponding intercept of SSRQs is larger than that for RQQs and increases with $R$, suggesting a connection between the radio jets and the configuration of the accretion flow. Flat-spectrum radio quasars (FSRQs; $alpha_mathrm{r}>-0.5$) are generally more X-ray luminous than SSRQs at given $L_mathrm{uv}$ and $R$, likely involving more physical processes. The emergent picture is different from that commonly assumed where the excess X-ray emission of RLQs is attributed to the jets. We thus perform model selection to comparecritically these different interpretations, which prefers the coronal scenario with a corona-jet connection. A distinct jet component is likely important for only a small portion of FSRQs.The corona-jet, disk-corona, and disk-jet connections of RLQs are likely driven by independent physical processes. Furthermore, the corona-jet connection implies that small-scale processesin the vicinity of SMBHs, probably associated with the magnetic flux/topology instead of black-hole spin, are controlling the radio-loudness of quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا