ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the disk-corona interplay in radiatively-efficient broad-line AGN

131   0   0.0 ( 0 )
 نشر من قبل Riccardo Arcodia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The correlation observed between monochromatic X-ray and UV luminosities in radiatively-efficient active galactic nuclei (AGN) lacks a clear theoretical explanation despite being used for many applications. Such a correlation, with its small intrinsic scatter and its slope that is smaller than unity in log space, represents the compelling evidence that a mechanism regulating the energetic interaction between the accretion disk and the X-ray corona must be in place. This ensures that going from fainter to brighter sources the coronal emission increases less than the disk emission. We discuss here a self-consistently coupled disk-corona model that can identify this regulating mechanism in terms of modified viscosity prescriptions in the accretion disk. The model predicts a lower fraction of accretion power dissipated in the corona for higher accretion states. We then present a quantitative observational test of the model using a reference sample of broad-line AGN and modeling the disk-corona emission for each source in the $L_X-L_{UV}$ plane. We used the slope, normalization, and scatter of the observed relation to constrain the parameters of the theoretical model. For non-spinning black holes and static coronae, we find that the accretion prescriptions that match the observed slope of the $L_X-L_{UV}$ relation produce X-rays that are too weak with respect to the normalization of the observed relation. Instead, considering moderately-outflowing Comptonizing coronae and/or a more realistic high-spinning black hole population significantly relax the tension between the strength of the observed and modeled X-ray emission, while also predicting very low intrinsic scatter in the $L_X-L_{UV}$ relation. In particular, this latter scenario traces a known selection effect of flux-limited samples that preferentially select high-spinning, hence brighter, sources.

قيم البحث

اقرأ أيضاً

The Broad Emission Lines (BELs) in spectra of type 1 Active Galactic Nuclei (AGN) can be very complex, indicating a complex Broad Line Region (BLR) geometry. According to the standard unification model one can expect an accretion disk around a superm assive black hole in all AGN. Therefore, a disk geometry is expected in the BLR. However, a small fraction of BELs show double-peaked profiles which indicate the disk geometry. Here, we discuss a two-component model, assuming an emission from the accretion disk and one additional emission from surrounding region. We compared the modeled BELs with observed ones (mostly broad H$alpha$ and H$beta$ profiles) finding that the model can well describe single-peaked and double-peaked observed broad line profiles.
We present the results from a joint Suzaku/NuSTAR broad-band spectral analysis of 3C 390.3. The high quality data enables us to clearly separate the primary continuum from the reprocessed components allowing us to detect a high energy spectral cut-of f ($E_text{cut}=117_{-14}^{+18}$ keV), and to place constraints on the Comptonization parameters of the primary continuum for the first time. The hard over soft compactness is 69$_{-24}^{+124}$ and the optical depth 4.1$_{-3.6}^{+0.5}$, this leads to an electron temperature of $30_{-8}^{+32}$ keV. Expanding our study of the Comptonization spectrum to the optical/UV by studying the simultaneous Swift-UVOT data, we find indications that the compactness of the corona allows only a small fraction of the total UV/optical flux to be Comptonized. Our analysis of the reprocessed emission show that 3C 390.3 only has a small amount of reflection (R~0.3), and of that the vast majority is from distant neutral matter. However we also discover a soft X-ray excess in the source, which can be described by a weak ionized reflection component from the inner parts of the accretion disk. In addition to the backscattered emission, we also detect the highly ionized iron emission lines Fe XXV and Fe XXVI.
232 - Jie-Ying Liu , B. F. Liu 2009
We compile a blue AGN sample from SDSS and investigate the ratio of hard X-ray to bolometric luminosity in dependence on Eddington ratio and black hole mass. Our sample comprises 240 radio-quiet Seyfert 1 galaxies and QSOs. We find that the fraction of hard X-ray luminosity (log$(L_{rm 2-10 kev}/L_{rm bol})$) decreases with the increase of Eddington ratio. We also find that the fraction of hard X-ray luminosity is independent on the black hole mass for the radio-quiet AGNs. The relation of log$(L_{rm 2-10 kev}/L_{rm bol})$ decreasing with increasing Eddington ratio indicates that X-ray bolometric correction is not a constant, from a larger sample supporting the results of Vasudevan & Fabian (2007). We interpret our results by the disk corona evaporation/condensation model (Meyer et al. cite{me200}; Liu et al. 2002a; Liu et al. 2007). In the frame of this model, the Compton cooling becomes efficient in cooling of the corona at high accretion rate (in units of Eddington rate), leading to condensation of corona gas to the disk. Consequently, the relative strength of corona to the disk becomes weaker at higher Eddington ratio. Therefore, the fraction of hard X-ray emission to disk emission and hence to the bolometric emission is smaller at higher Eddington ratio. The independence of the fraction of hard X-ray luminosity on the mass of the black hole can also be explained by the disk corona model since the corona structure and luminosity (in units of Eddington luminosity) are independent on the mass of black holes.
The truncation of an optically thick, geometrically thin accretion disk is investigated in the context of low luminosity AGN (LLAGN). We generalize the disk evaporation model used in the interpretative framework of black hole X-ray binaries by includ ing the effect of a magnetic field in accretion disks surrounding supermassive black holes. The critical transition mass accretion rate for which the disk is truncated is found to be insensitive to magnetic effects, but its inclusion leads to a smaller truncation radius in comparison to a model without its consideration. That is, a thin viscous disk is truncated for LLAGN at an Eddington ratio less than 0.03 for a standard viscosity parameter ($alpha = 0.3$). An increase of the viscosity parameter results in a higher critical transition mass accretion rate and a correspondingly smaller truncation distance, the latter accentuated by greater magnetic energy densities in the disk. Based on these results, the truncation radii inferred from spectral fits of LLAGN published in the literature are consistent with the disk evaporation model. The infrared emission arising from the truncated geometrically thin accretion disks may be responsible for the red bump seen in such LLAGN.
Changing-look quasars are a new class of highly variable active galactic nuclei that have changed their spectral type over surprisingly short timescales of just a few years. The origin of this phenomenon is debated, but is likely to reflect some chan ge in the accretion flow. To investigate the disk-corona systems in these objects, we measure optical/UV-X-ray spectral indices ($alpha_{rm OX}$) and Eddington ratios ($lambda_{rm Edd}$) of ten previously-discovered changing-look quasars at two or more epochs. By comparing these data with simulated results based on the behavior of X-ray binaries, we find possible similarities in spectral indices below 1% Eddington ratio. We further investigate the Eddington ratios of changing-look quasars before and after their spectral type changes, and find that changing-look quasars cross the 1% Eddington ratio boundary when their broad emission lines disappear/emerge. This is consistent with the disk-wind model as the origin of broad emission lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا