ترغب بنشر مسار تعليمي؟ اضغط هنا

The $L_mathrm{x}$-$L_mathrm{uv}$-$L_mathrm{radio}$ relation and corona-disk-jet connection in optically selected radio-loud quasars

174   0   0.0 ( 0 )
 نشر من قبل Shifu Zhu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio-loud quasars (RLQs) are more X-ray luminous than predicted by the X-ray-optical/UV relation (i.e. $L_mathrm{x}propto L_mathrm{uv}^gamma$) for radio-quiet quasars (RQQs). The excess X-ray emission depends on the radio-loudness parameter ($R$) and radio spectral slope ($alpha_mathrm{r}$). We construct a uniform sample of 729 optically selected RLQs with high fractions of X-ray detections and $alpha_mathrm{r}$ measurements.We find that steep-spectrum radio quasars (SSRQs; $alpha_mathrm{r}le-0.5$) follow a quantitatively similar $L_mathrm{x}propto L_mathrm{uv}^gamma$ relation as that for RQQs, suggesting a common coronal origin for the X-ray emission of both SSRQs and RQQs. However, the corresponding intercept of SSRQs is larger than that for RQQs and increases with $R$, suggesting a connection between the radio jets and the configuration of the accretion flow. Flat-spectrum radio quasars (FSRQs; $alpha_mathrm{r}>-0.5$) are generally more X-ray luminous than SSRQs at given $L_mathrm{uv}$ and $R$, likely involving more physical processes. The emergent picture is different from that commonly assumed where the excess X-ray emission of RLQs is attributed to the jets. We thus perform model selection to comparecritically these different interpretations, which prefers the coronal scenario with a corona-jet connection. A distinct jet component is likely important for only a small portion of FSRQs.The corona-jet, disk-corona, and disk-jet connections of RLQs are likely driven by independent physical processes. Furthermore, the corona-jet connection implies that small-scale processesin the vicinity of SMBHs, probably associated with the magnetic flux/topology instead of black-hole spin, are controlling the radio-loudness of quasars.


قيم البحث

اقرأ أيضاً

Radio-loud quasars (RLQs) are known to produce excess X-ray emission, compared to radio-quiet quasars (RQQs) of the same luminosity, commonly attributed to jet-related emission. Recently, we found that the HeII EW and $alpha_{rm{ox}}$ in RQQs are str ongly correlated, which suggests that their extreme-ultraviolet (EUV) and X-ray emission mechanisms are tightly related. Using 48 RLQs, we show that steep-spectrum radio quasars (SSRQs) and low radio-luminosity ($L_{rm R}$) flat-spectrum radio quasars (FSRQs) follow the $alpha_{rm ox}$--HeII EW relation of RQQs. This suggests that the X-ray and EUV emission mechanisms in these types of RLQs is the same as in RQQs, and is not jet related. High-$L_{rm R}$ FSRQs show excess X-ray emission given their HeII EW by a factor of $approx$ 3.5, which suggests that only in this type of RLQ is the X-ray production likely jet related.
We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 120 between 2002 and 2007 at X-ray, optical, and radio wave bands, as well as imaging with the Very Long Baseline Array (VLBA). Over the 5 yr of observation, signif icant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. Consistent with this, the X-ray flux and 37 GHz flux are anti-correlated with X-ray leading the radio variations. This implies that, in this radio galaxy, the radiative state of accretion disk plus corona system, where the X-rays are produced, has a direct effect on the events in the jet, where the radio emission originates. The X-ray power spectral density of 3C 120 shows a break, with steeper slope at shorter timescale and the break timescale is commensurate with the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries. These findings provide support for the paradigm that black hole X-ray binaries and active galactic nuclei are fundamentally similar systems, with characteristic time and size scales linearly proportional to the mass of the central black hole. The X-ray and optical variations are strongly correlated in 3C 120, which implies that the optical emission in this object arises from the same general region as the X-rays, i.e., in the accretion disk-corona system. We numerically model multi-wavelength light curves of 3C 120 from such a system with the optical-UV emission produced in the disk and the X-rays generated by scattering of thermal photons by hot electrons in the corona. From the comparison of the temporal properties of the model light curves to that of the observed variability, we constrain the physical size of the corona and the distances of the emitting regions from the central BH.
We investigate the relation between the two modes of outflow (wind and jet) in radio-loud active galactic nuclei (AGN). For this study we have carried out a systematic and homogeneous analysis of XMM-Newton spectra of a sample of 16 suitable radio-lo ud Seyfert-1 AGN. The ionised winds in these AGN are parameterised through high-resolution X-ray spectroscopy and photoionisation modelling. We discover a significant inverse correlation between the column density NH of the ionised wind and the radio-loudness parameter R of the jet. We explore different possible explanations for this NH-R relation and find that ionisation, inclination, and luminosity effects are unlikely to be responsible for the observed relation. We argue that the NH-R relation is rather a manifestation of the magnetic driving mechanism of the wind from the accretion disk. Change in the magnetic field configuration from toroidal to poloidal, powering either the wind or the jet mode of the outflow, is the most feasible explanation for the observed decline in the wind NH as the radio jet becomes stronger. Our findings provide evidence for a wind-jet bimodality in radio-loud AGN and shine new light on the link between these two modes of outflow. This has far-reaching consequences for the accretion disk structure and the wind ejection mechanism.
71 - Zhen-Yi Cai 2018
Jet launching in radio loud (RL) quasars is one of the fundamental problems in astrophysics. Exploring the differences in the inner accretion disk properties between RL and radio quiet (RQ) quasars might yield helpful clues to this puzzle. We previou sly discovered that the shorter term UV/optical variations of quasars are bluer than the longer term ones, i.e., the so-called timescale-dependent color variation. This is consistent with the scheme that the faster variations come from the inner and hotter disk regions, thus providing a useful tool to map the accretion disk which is otherwise unresolvable. In this work we compare the UV/optical variations of RL quasars in SDSS Stripe 82 to those of several RQ samples, including those matched in redshift-luminosity-black hole mass and/or color-magnitude. We find that while both RL and RQ populations appear bluer when they brighten, RL quasars potentially show a weaker/flatter dependence on timescale in their color variation. We further find that while both RL and RQ populations on average show similar variation amplitudes at long timescales, fast variations of RL sources appear weaker/smaller (at timescales of ~ 25 -- 300 days in the observers frame), and the difference is more prominent in the g-band than in the r-band. Inhomogeneous disk simulations can qualitatively reproduce these observed differences if the inner accretion disk of RL quasars fluctuates less based on simple toy models. Though the implications are likely model dependent, the discovery points to an interesting diagram that magnetic fields in RL quasars may be prospectively stronger and play a key role in both jet launching and the stabilization of the inner accretion disk.
156 - Minhua Zhou , Minfeng Gu 2020
We present the study on the X-ray emission for a sample of radio-detected quasars constructed from the cross-matches between SDSS, FIRST catalogs and XMM-Newton archives. A sample of radio-quiet SDSS quasars without FIRST radio detection is also asse mbled for comparison. We construct the optical and X-ray composite spectra normalized at rest frame $4215,rm AA$ (or $2200,rm AA$) for both radio-loud quasars (RLQs) and radio-quiet quasars (RQQs) at $zle3.2$, with matched X-ray completeness of 19%, redshift and optical luminosity. While the optical composite spectrum of RLQs is similar to that of RQQs, we find that RLQs have higher X-ray composite spectrum than RQQs, consistent with previous studies in the literature. By dividing the radio-detected quasars into radio loudness bins, we find the X-ray composite spectra are generally higher with increasing radio loudness. Moreover, a significant correlation is found between the optical-to-X-ray spectral index and radio loudness, and there is a unified multi-correlation between the radio, X-ray luminosities and radio loudness in radio-detected quasars. These results could be possibly explained with the corona-jet model, in which the corona and jet are directly related.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا