ترغب بنشر مسار تعليمي؟ اضغط هنا

Realizing Families of Landweber Exact Homology Theories

117   0   0.0 ( 0 )
 نشر من قبل Paul Goerss
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Paul G. Goerss




اسأل ChatGPT حول البحث

I discuss the problem of realizing families of complex orientable homology theories as families of commutative ring spectra, including a recent result of Jacob Lurie emphasizing the role of p-divisible groups.



قيم البحث

اقرأ أيضاً

116 - Ulrich Bunke 2012
The main aim of this paper is the construction of a smooth (sometimes called differential) extension hat{MU} of the cohomology theory complex cobordism MU, using cycles for hat{MU}(M) which are essentially proper maps Wto M with a fixed U(n)-structur e and U(n)-connection on the (stable) normal bundle of Wto M. Crucial is that this model allows the construction of a product structure and of pushdown maps for this smooth extension of MU, which have all the expected properties. Moreover, we show, using the Landweber exact functor principle, that hat{R}(M):=hat{MU}(M)otimes_{MU^*}R defines a multiplicative smooth extension of R(M):=MU(M)otimes_{MU^*}R whenever R is a Landweber exact MU*-module. An example for this construction is a new way to define a multiplicative smooth K-theory.
We study the homology of free loop spaces via techniques arising from the theory of topological coHochschild homology (coTHH). Topological coHochschild homology is a topological analogue of the classical theory of coHochschild homology for coalgebras . We produce new spectrum-level structure on coTHH of suspension spectra as well as new algebraic structure in the coBokstedt spectral sequence for computing coTHH. These new techniques allow us to compute the homology of free loop spaces in several new cases, extending known calculations.
113 - Morten Brun 2008
We introduce the notion of covering homology of a commutative ring spectrum with respect to certain families of coverings of topological spaces. The construction of covering homology is extracted from Bokstedt, Hsiang and Madsens topological cyclic h omology. In fact covering homology with respect to the family of orientation preserving isogenies of the circle is equal to topological cyclic homology. Our basic tool for the analysis of covering homology is a cofibration sequence involving homotopy orbits and a restriction map similar to the restriction map used in Bokstedt, Hsiang and Madsens construction of topological cyclic homology. Covering homology with respect to families of isogenies of a torus is constructed from iterated topological Hochschild homology. It receives a trace map from iterated algebraic K-theory and the hope is that the rich structure, and the calculability of covering homology will make covering homology useful in the exploration of J. Rognes ``red shift conjecture.
In this article we develop the cotangent complex and (co)homology theories for spectral categories. Along the way, we reproduce standard model structures on spectral categories. As applications, we show that the invariants to descend to stable $infty $-categories and we prove a stabilization result for spectral categories.
95 - Victoria Lebed 2020
Despite a blossoming of research activity on racks and their homology for over two decades, with a record of diverse applications to central parts of contemporary mathematics, there are still very few examples of racks whose homology has been fully c alculated. In this paper, we compute the entire integral homology of all permutation racks. Our method of choice involves homotopical algebra, which was brought to bear on the homology of racks only recently. For our main result, we establish a spectral sequence, which reduces the problem to one in equivariant homology, and for which we show that it always degenerates. The blueprint given in this paper demonstrates the high potential for further exploitation of these techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا