ﻻ يوجد ملخص باللغة العربية
We study the homology of free loop spaces via techniques arising from the theory of topological coHochschild homology (coTHH). Topological coHochschild homology is a topological analogue of the classical theory of coHochschild homology for coalgebras. We produce new spectrum-level structure on coTHH of suspension spectra as well as new algebraic structure in the coBokstedt spectral sequence for computing coTHH. These new techniques allow us to compute the homology of free loop spaces in several new cases, extending known calculations.
In recent work, Hess and Shipley defined a theory of topological coHochschild homology (coTHH) for coalgebras. In this paper we develop computational tools to study this new theory. In particular, we prove a Hochschild-Kostant-Rosenberg type theorem
In this paper, we build up a scaled homology theory, $lc$-homology, for metric spaces such that every metric space can be visually regarded as locally contractible with this newly-built homology. We check that $lc$-homology satisfies all Eilenberg-St
Magnitude is a numerical invariant of enriched categories, including in particular metric spaces as $[0,infty)$-enriched categories. We show that in many cases magnitude can be categorified to a homology theory for enriched categories, which we call
Hepworth, Willerton, Leinster and Shulman introduced the magnitude homology groups for enriched categories, in particular, for metric spaces. The purpose of this paper is to describe the magnitude homology group of a metric space in terms of order co
We show that an important classical fixed point invariant, the Reidemeister trace, arises as a topological Hochschild homology transfer. This generalizes a corresponding classical result for the Euler characteristic and is a first step in showing the