ﻻ يوجد ملخص باللغة العربية
We introduce the notion of covering homology of a commutative ring spectrum with respect to certain families of coverings of topological spaces. The construction of covering homology is extracted from Bokstedt, Hsiang and Madsens topological cyclic homology. In fact covering homology with respect to the family of orientation preserving isogenies of the circle is equal to topological cyclic homology. Our basic tool for the analysis of covering homology is a cofibration sequence involving homotopy orbits and a restriction map similar to the restriction map used in Bokstedt, Hsiang and Madsens construction of topological cyclic homology. Covering homology with respect to families of isogenies of a torus is constructed from iterated topological Hochschild homology. It receives a trace map from iterated algebraic K-theory and the hope is that the rich structure, and the calculability of covering homology will make covering homology useful in the exploration of J. Rognes ``red shift conjecture.
In recent work, Hess and Shipley defined a theory of topological coHochschild homology (coTHH) for coalgebras. In this paper we develop computational tools to study this new theory. In particular, we prove a Hochschild-Kostant-Rosenberg type theorem
We calculate the integral homotopy groups of THH(l) at any prime and of THH(ko) at p=2, where l is the Adams summand of the connective complex p-local K-theory spectrum and ko is the connective real K-theory spectrum.
We give a new proof of a result of Lazarev, that the dual of the circle $S^1_+$ in the category of spectra is equivalent to a strictly square-zero extension as an associative ring spectrum. As an application, we calculate the topological cyclic homol
We compute topological Hochschild homology of sufficiently structured forms of truncated Brown--Peterson spectra with coefficients. In particular, we compute $operatorname{THH}_*(operatorname{taf}^D;M)$ for $Min { Hmathbb{Z}_{(3)},k(1),k(2)}$ where $
Twisted topological Hochschild homology of $C_n$-equivariant spectra was introduced by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell, building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory. In this pape